Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
x qiymati -1,-\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(3x+1\right) ga, 3x+1,x+1 ning eng kichik karralisiga ko‘paytiring.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
3x+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ni olish uchun x va 6x ni birlashtirish.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 olish uchun 1 va 2'ni qo'shing.
7x+3=\left(3x+3\right)\left(3x+1\right)
3 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x+3=9x^{2}+12x+3
3x+3 ga 3x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x+3-9x^{2}=12x+3
Ikkala tarafdan 9x^{2} ni ayirish.
7x+3-9x^{2}-12x=3
Ikkala tarafdan 12x ni ayirish.
-5x+3-9x^{2}=3
-5x ni olish uchun 7x va -12x ni birlashtirish.
-5x+3-9x^{2}-3=0
Ikkala tarafdan 3 ni ayirish.
-5x-9x^{2}=0
0 olish uchun 3 dan 3 ni ayirish.
-9x^{2}-5x=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\left(-9\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -9 ni a, -5 ni b va 0 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±5}{2\left(-9\right)}
\left(-5\right)^{2} ning kvadrat ildizini chiqarish.
x=\frac{5±5}{2\left(-9\right)}
-5 ning teskarisi 5 ga teng.
x=\frac{5±5}{-18}
2 ni -9 marotabaga ko'paytirish.
x=\frac{10}{-18}
x=\frac{5±5}{-18} tenglamasini yeching, bunda ± musbat. 5 ni 5 ga qo'shish.
x=-\frac{5}{9}
\frac{10}{-18} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{0}{-18}
x=\frac{5±5}{-18} tenglamasini yeching, bunda ± manfiy. 5 dan 5 ni ayirish.
x=0
0 ni -18 ga bo'lish.
x=-\frac{5}{9} x=0
Tenglama yechildi.
x+1+\left(3x+1\right)\times 2=3\left(x+1\right)\left(3x+1\right)
x qiymati -1,-\frac{1}{3} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(3x+1\right) ga, 3x+1,x+1 ning eng kichik karralisiga ko‘paytiring.
x+1+6x+2=3\left(x+1\right)\left(3x+1\right)
3x+1 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x+1+2=3\left(x+1\right)\left(3x+1\right)
7x ni olish uchun x va 6x ni birlashtirish.
7x+3=3\left(x+1\right)\left(3x+1\right)
3 olish uchun 1 va 2'ni qo'shing.
7x+3=\left(3x+3\right)\left(3x+1\right)
3 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
7x+3=9x^{2}+12x+3
3x+3 ga 3x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
7x+3-9x^{2}=12x+3
Ikkala tarafdan 9x^{2} ni ayirish.
7x+3-9x^{2}-12x=3
Ikkala tarafdan 12x ni ayirish.
-5x+3-9x^{2}=3
-5x ni olish uchun 7x va -12x ni birlashtirish.
-5x-9x^{2}=3-3
Ikkala tarafdan 3 ni ayirish.
-5x-9x^{2}=0
0 olish uchun 3 dan 3 ni ayirish.
-9x^{2}-5x=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-9x^{2}-5x}{-9}=\frac{0}{-9}
Ikki tarafini -9 ga bo‘ling.
x^{2}+\left(-\frac{5}{-9}\right)x=\frac{0}{-9}
-9 ga bo'lish -9 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{9}x=\frac{0}{-9}
-5 ni -9 ga bo'lish.
x^{2}+\frac{5}{9}x=0
0 ni -9 ga bo'lish.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=\left(\frac{5}{18}\right)^{2}
\frac{5}{9} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{18} olish uchun. Keyin, \frac{5}{18} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{9}x+\frac{25}{324}=\frac{25}{324}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{18} kvadratini chiqarish.
\left(x+\frac{5}{18}\right)^{2}=\frac{25}{324}
x^{2}+\frac{5}{9}x+\frac{25}{324} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{\frac{25}{324}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{18}=\frac{5}{18} x+\frac{5}{18}=-\frac{5}{18}
Qisqartirish.
x=0 x=-\frac{5}{9}
Tenglamaning ikkala tarafidan \frac{5}{18} ni ayirish.