x uchun yechish
x=6\sqrt{3}-9\approx 1,392304845
x=-6\sqrt{3}-9\approx -19,392304845
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{3}x^{2}+6x=9
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\frac{1}{3}x^{2}+6x-9=9-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
\frac{1}{3}x^{2}+6x-9=0
O‘zidan 9 ayirilsa 0 qoladi.
x=\frac{-6±\sqrt{6^{2}-4\times \frac{1}{3}\left(-9\right)}}{2\times \frac{1}{3}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{3} ni a, 6 ni b va -9 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times \frac{1}{3}\left(-9\right)}}{2\times \frac{1}{3}}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-\frac{4}{3}\left(-9\right)}}{2\times \frac{1}{3}}
-4 ni \frac{1}{3} marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36+12}}{2\times \frac{1}{3}}
-\frac{4}{3} ni -9 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{48}}{2\times \frac{1}{3}}
36 ni 12 ga qo'shish.
x=\frac{-6±4\sqrt{3}}{2\times \frac{1}{3}}
48 ning kvadrat ildizini chiqarish.
x=\frac{-6±4\sqrt{3}}{\frac{2}{3}}
2 ni \frac{1}{3} marotabaga ko'paytirish.
x=\frac{4\sqrt{3}-6}{\frac{2}{3}}
x=\frac{-6±4\sqrt{3}}{\frac{2}{3}} tenglamasini yeching, bunda ± musbat. -6 ni 4\sqrt{3} ga qo'shish.
x=6\sqrt{3}-9
-6+4\sqrt{3} ni \frac{2}{3} ga bo'lish -6+4\sqrt{3} ga k'paytirish \frac{2}{3} ga qaytarish.
x=\frac{-4\sqrt{3}-6}{\frac{2}{3}}
x=\frac{-6±4\sqrt{3}}{\frac{2}{3}} tenglamasini yeching, bunda ± manfiy. -6 dan 4\sqrt{3} ni ayirish.
x=-6\sqrt{3}-9
-6-4\sqrt{3} ni \frac{2}{3} ga bo'lish -6-4\sqrt{3} ga k'paytirish \frac{2}{3} ga qaytarish.
x=6\sqrt{3}-9 x=-6\sqrt{3}-9
Tenglama yechildi.
\frac{1}{3}x^{2}+6x=9
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}+6x}{\frac{1}{3}}=\frac{9}{\frac{1}{3}}
Ikkala tarafini 3 ga ko‘paytiring.
x^{2}+\frac{6}{\frac{1}{3}}x=\frac{9}{\frac{1}{3}}
\frac{1}{3} ga bo'lish \frac{1}{3} ga ko'paytirishni bekor qiladi.
x^{2}+18x=\frac{9}{\frac{1}{3}}
6 ni \frac{1}{3} ga bo'lish 6 ga k'paytirish \frac{1}{3} ga qaytarish.
x^{2}+18x=27
9 ni \frac{1}{3} ga bo'lish 9 ga k'paytirish \frac{1}{3} ga qaytarish.
x^{2}+18x+9^{2}=27+9^{2}
18 ni bo‘lish, x shartining koeffitsienti, 2 ga 9 olish uchun. Keyin, 9 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+18x+81=27+81
9 kvadratini chiqarish.
x^{2}+18x+81=108
27 ni 81 ga qo'shish.
\left(x+9\right)^{2}=108
x^{2}+18x+81 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+9\right)^{2}}=\sqrt{108}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+9=6\sqrt{3} x+9=-6\sqrt{3}
Qisqartirish.
x=6\sqrt{3}-9 x=-6\sqrt{3}-9
Tenglamaning ikkala tarafidan 9 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}