Tasdiqlamoq
yolgʻon
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{3}+4-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
\frac{1}{3}+\frac{12}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
4 ni \frac{12}{3} kasrga o‘giring.
\frac{1+12}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
\frac{1}{3} va \frac{12}{3} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{13}{3}-\frac{4}{3}\times \frac{2}{6}=\frac{1}{4}
13 olish uchun 1 va 12'ni qo'shing.
\frac{13}{3}-\frac{4}{3}\times \frac{1}{3}=\frac{1}{4}
\frac{2}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{13}{3}-\frac{4\times 1}{3\times 3}=\frac{1}{4}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{4}{3} ni \frac{1}{3} ga ko‘paytiring.
\frac{13}{3}-\frac{4}{9}=\frac{1}{4}
\frac{4\times 1}{3\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{39}{9}-\frac{4}{9}=\frac{1}{4}
3 va 9 ning eng kichik umumiy karralisi 9 ga teng. \frac{13}{3} va \frac{4}{9} ni 9 maxraj bilan kasrlarga aylantirib oling.
\frac{39-4}{9}=\frac{1}{4}
\frac{39}{9} va \frac{4}{9} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{35}{9}=\frac{1}{4}
35 olish uchun 39 dan 4 ni ayirish.
\frac{140}{36}=\frac{9}{36}
9 va 4 ning eng kichik umumiy karralisi 36 ga teng. \frac{35}{9} va \frac{1}{4} ni 36 maxraj bilan kasrlarga aylantirib oling.
\text{false}
\frac{140}{36} va \frac{9}{36} ni taqqoslang.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}