Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6x\left(x+2\right) ga, 3,x,2+x,6x ning eng kichik karralisiga ko‘paytiring.
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
6x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+4x+6x+12=6x-\left(x+2\right)
6x^{2}+12x ga \frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+10x+12=6x-\left(x+2\right)
10x ni olish uchun 4x va 6x ni birlashtirish.
2x^{2}+10x+12=6x-x-2
x+2 teskarisini topish uchun har birining teskarisini toping.
2x^{2}+10x+12=5x-2
5x ni olish uchun 6x va -x ni birlashtirish.
2x^{2}+10x+12-5x=-2
Ikkala tarafdan 5x ni ayirish.
2x^{2}+5x+12=-2
5x ni olish uchun 10x va -5x ni birlashtirish.
2x^{2}+5x+12+2=0
2 ni ikki tarafga qo’shing.
2x^{2}+5x+14=0
14 olish uchun 12 va 2'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}-4\times 2\times 14}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, 5 ni b va 14 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\times 2\times 14}}{2\times 2}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25-8\times 14}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-112}}{2\times 2}
-8 ni 14 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{-87}}{2\times 2}
25 ni -112 ga qo'shish.
x=\frac{-5±\sqrt{87}i}{2\times 2}
-87 ning kvadrat ildizini chiqarish.
x=\frac{-5±\sqrt{87}i}{4}
2 ni 2 marotabaga ko'paytirish.
x=\frac{-5+\sqrt{87}i}{4}
x=\frac{-5±\sqrt{87}i}{4} tenglamasini yeching, bunda ± musbat. -5 ni i\sqrt{87} ga qo'shish.
x=\frac{-\sqrt{87}i-5}{4}
x=\frac{-5±\sqrt{87}i}{4} tenglamasini yeching, bunda ± manfiy. -5 dan i\sqrt{87} ni ayirish.
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
Tenglama yechildi.
6x\left(x+2\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
x qiymati -2,0 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 6x\left(x+2\right) ga, 3,x,2+x,6x ning eng kichik karralisiga ko‘paytiring.
\left(6x^{2}+12x\right)\times \frac{1}{3}+6x+12=6x-\left(x+2\right)
6x ga x+2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+4x+6x+12=6x-\left(x+2\right)
6x^{2}+12x ga \frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x^{2}+10x+12=6x-\left(x+2\right)
10x ni olish uchun 4x va 6x ni birlashtirish.
2x^{2}+10x+12=6x-x-2
x+2 teskarisini topish uchun har birining teskarisini toping.
2x^{2}+10x+12=5x-2
5x ni olish uchun 6x va -x ni birlashtirish.
2x^{2}+10x+12-5x=-2
Ikkala tarafdan 5x ni ayirish.
2x^{2}+5x+12=-2
5x ni olish uchun 10x va -5x ni birlashtirish.
2x^{2}+5x=-2-12
Ikkala tarafdan 12 ni ayirish.
2x^{2}+5x=-14
-14 olish uchun -2 dan 12 ni ayirish.
\frac{2x^{2}+5x}{2}=-\frac{14}{2}
Ikki tarafini 2 ga bo‘ling.
x^{2}+\frac{5}{2}x=-\frac{14}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{5}{2}x=-7
-14 ni 2 ga bo'lish.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=-7+\left(\frac{5}{4}\right)^{2}
\frac{5}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{4} olish uchun. Keyin, \frac{5}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-7+\frac{25}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{4} kvadratini chiqarish.
x^{2}+\frac{5}{2}x+\frac{25}{16}=-\frac{87}{16}
-7 ni \frac{25}{16} ga qo'shish.
\left(x+\frac{5}{4}\right)^{2}=-\frac{87}{16}
x^{2}+\frac{5}{2}x+\frac{25}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{-\frac{87}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{5}{4}=\frac{\sqrt{87}i}{4} x+\frac{5}{4}=-\frac{\sqrt{87}i}{4}
Qisqartirish.
x=\frac{-5+\sqrt{87}i}{4} x=\frac{-\sqrt{87}i-5}{4}
Tenglamaning ikkala tarafidan \frac{5}{4} ni ayirish.