Baholash
\frac{2759}{9555}\approx 0,288749346
Omil
\frac{31 \cdot 89}{3 \cdot 5 \cdot 7 ^ {2} \cdot 13} = 0,288749345892203
Viktorina
Arithmetic
\frac { 1 } { 21 } + \frac { 3 } { 13 } - \frac { 1 } { 49 } + \frac { 2 } { 65 } =
Baham ko'rish
Klipbordga nusxa olish
\frac{13}{273}+\frac{63}{273}-\frac{1}{49}+\frac{2}{65}
21 va 13 ning eng kichik umumiy karralisi 273 ga teng. \frac{1}{21} va \frac{3}{13} ni 273 maxraj bilan kasrlarga aylantirib oling.
\frac{13+63}{273}-\frac{1}{49}+\frac{2}{65}
\frac{13}{273} va \frac{63}{273} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{76}{273}-\frac{1}{49}+\frac{2}{65}
76 olish uchun 13 va 63'ni qo'shing.
\frac{532}{1911}-\frac{39}{1911}+\frac{2}{65}
273 va 49 ning eng kichik umumiy karralisi 1911 ga teng. \frac{76}{273} va \frac{1}{49} ni 1911 maxraj bilan kasrlarga aylantirib oling.
\frac{532-39}{1911}+\frac{2}{65}
\frac{532}{1911} va \frac{39}{1911} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{493}{1911}+\frac{2}{65}
493 olish uchun 532 dan 39 ni ayirish.
\frac{2465}{9555}+\frac{294}{9555}
1911 va 65 ning eng kichik umumiy karralisi 9555 ga teng. \frac{493}{1911} va \frac{2}{65} ni 9555 maxraj bilan kasrlarga aylantirib oling.
\frac{2465+294}{9555}
\frac{2465}{9555} va \frac{294}{9555} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{2759}{9555}
2759 olish uchun 2465 va 294'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}