Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 2x-1,2x+1,4 ning eng kichik karralisiga ko‘paytiring.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
8x-4 teskarisini topish uchun har birining teskarisini toping.
4+4=\left(2x-1\right)\left(2x+1\right)
0 ni olish uchun 8x va -8x ni birlashtirish.
8=\left(2x-1\right)\left(2x+1\right)
8 olish uchun 4 va 4'ni qo'shing.
8=\left(2x\right)^{2}-1
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
8=2^{2}x^{2}-1
\left(2x\right)^{2} ni kengaytirish.
8=4x^{2}-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1=8
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}=8+1
1 ni ikki tarafga qo’shing.
4x^{2}=9
9 olish uchun 8 va 1'ni qo'shing.
x^{2}=\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 2x-1,2x+1,4 ning eng kichik karralisiga ko‘paytiring.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
8x-4 teskarisini topish uchun har birining teskarisini toping.
4+4=\left(2x-1\right)\left(2x+1\right)
0 ni olish uchun 8x va -8x ni birlashtirish.
8=\left(2x-1\right)\left(2x+1\right)
8 olish uchun 4 va 4'ni qo'shing.
8=\left(2x\right)^{2}-1
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
8=2^{2}x^{2}-1
\left(2x\right)^{2} ni kengaytirish.
8=4x^{2}-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1=8
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-1-8=0
Ikkala tarafdan 8 ni ayirish.
4x^{2}-9=0
-9 olish uchun -1 dan 8 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{144}}{2\times 4}
-16 ni -9 marotabaga ko'paytirish.
x=\frac{0±12}{2\times 4}
144 ning kvadrat ildizini chiqarish.
x=\frac{0±12}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{3}{2}
x=\frac{0±12}{8} tenglamasini yeching, bunda ± musbat. \frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{3}{2}
x=\frac{0±12}{8} tenglamasini yeching, bunda ± manfiy. \frac{-12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglama yechildi.