x uchun yechish
x = -\frac{3}{2} = -1\frac{1}{2} = -1,5
x = \frac{3}{2} = 1\frac{1}{2} = 1,5
Grafik
Viktorina
Polynomial
5xshash muammolar:
\frac { 1 } { 2 x - 1 } - \frac { 1 } { 2 x + 1 } = \frac { 1 } { 4 } =
Baham ko'rish
Klipbordga nusxa olish
8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 2x-1,2x+1,4 ning eng kichik karralisiga ko‘paytiring.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
8x-4 teskarisini topish uchun har birining teskarisini toping.
4+4=\left(2x-1\right)\left(2x+1\right)
0 ni olish uchun 8x va -8x ni birlashtirish.
8=\left(2x-1\right)\left(2x+1\right)
8 olish uchun 4 va 4'ni qo'shing.
8=\left(2x\right)^{2}-1
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
8=2^{2}x^{2}-1
\left(2x\right)^{2} ni kengaytirish.
8=4x^{2}-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1=8
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}=8+1
1 ni ikki tarafga qo’shing.
4x^{2}=9
9 olish uchun 8 va 1'ni qo'shing.
x^{2}=\frac{9}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
8x+4-\left(8x-4\right)=\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 2x-1,2x+1,4 ning eng kichik karralisiga ko‘paytiring.
8x+4-8x+4=\left(2x-1\right)\left(2x+1\right)
8x-4 teskarisini topish uchun har birining teskarisini toping.
4+4=\left(2x-1\right)\left(2x+1\right)
0 ni olish uchun 8x va -8x ni birlashtirish.
8=\left(2x-1\right)\left(2x+1\right)
8 olish uchun 4 va 4'ni qo'shing.
8=\left(2x\right)^{2}-1
Hisoblang: \left(2x-1\right)\left(2x+1\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 1 kvadratini chiqarish.
8=2^{2}x^{2}-1
\left(2x\right)^{2} ni kengaytirish.
8=4x^{2}-1
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
4x^{2}-1=8
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
4x^{2}-1-8=0
Ikkala tarafdan 8 ni ayirish.
4x^{2}-9=0
-9 olish uchun -1 dan 8 ni ayirish.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-9\right)}}{2\times 4}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 4 ni a, 0 ni b va -9 ni c bilan almashtiring.
x=\frac{0±\sqrt{-4\times 4\left(-9\right)}}{2\times 4}
0 kvadratini chiqarish.
x=\frac{0±\sqrt{-16\left(-9\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{0±\sqrt{144}}{2\times 4}
-16 ni -9 marotabaga ko'paytirish.
x=\frac{0±12}{2\times 4}
144 ning kvadrat ildizini chiqarish.
x=\frac{0±12}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{3}{2}
x=\frac{0±12}{8} tenglamasini yeching, bunda ± musbat. \frac{12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=-\frac{3}{2}
x=\frac{0±12}{8} tenglamasini yeching, bunda ± manfiy. \frac{-12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x=\frac{3}{2} x=-\frac{3}{2}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}