Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)}
\frac{1}{2-i}ning surat va maxrajini murakkab tutash maxraj 2+i bilan ko‘paytiring.
\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)}
2+i hosil qilish uchun 1 va 2+i ni ko'paytirish.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)}
\frac{2}{5}+\frac{1}{5}i ni olish uchun 2+i ni 5 ga bo‘ling.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}}
i ni 1+i marotabaga ko'paytirish.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i}
Shartlarni qayta saralash.
\frac{2}{5}+\frac{1}{5}i-1
-1 ni olish uchun 1-i ni -1+i ga bo‘ling.
\frac{2}{5}-1+\frac{1}{5}i
1 ni \frac{2}{5}+\frac{1}{5}i dan mos real va mavhum qismlarni ayirish orqali ayiring.
-\frac{3}{5}+\frac{1}{5}i
-\frac{3}{5} olish uchun \frac{2}{5} dan 1 ni ayirish.
Re(\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}+\frac{1-i}{i\left(1+i\right)})
\frac{1}{2-i}ning surat va maxrajini murakkab tutash maxraj 2+i bilan ko‘paytiring.
Re(\frac{1\left(2+i\right)}{2^{2}-i^{2}}+\frac{1-i}{i\left(1+i\right)})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2+i\right)}{5}+\frac{1-i}{i\left(1+i\right)})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2+i}{5}+\frac{1-i}{i\left(1+i\right)})
2+i hosil qilish uchun 1 va 2+i ni ko'paytirish.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i\left(1+i\right)})
\frac{2}{5}+\frac{1}{5}i ni olish uchun 2+i ni 5 ga bo‘ling.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i+i^{2}})
i ni 1+i marotabaga ko'paytirish.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{i-1})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{2}{5}+\frac{1}{5}i+\frac{1-i}{-1+i})
Shartlarni qayta saralash.
Re(\frac{2}{5}+\frac{1}{5}i-1)
-1 ni olish uchun 1-i ni -1+i ga bo‘ling.
Re(\frac{2}{5}-1+\frac{1}{5}i)
1 ni \frac{2}{5}+\frac{1}{5}i dan mos real va mavhum qismlarni ayirish orqali ayiring.
Re(-\frac{3}{5}+\frac{1}{5}i)
-\frac{3}{5} olish uchun \frac{2}{5} dan 1 ni ayirish.
-\frac{3}{5}
-\frac{3}{5}+\frac{1}{5}i ning real qismi – -\frac{3}{5}.