Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 2+i.
\frac{1\left(2+i\right)}{2^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(2+i\right)}{5}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{2+i}{5}
2+i hosil qilish uchun 1 va 2+i ni ko'paytirish.
\frac{2}{5}+\frac{1}{5}i
\frac{2}{5}+\frac{1}{5}i ni olish uchun 2+i ni 5 ga bo‘ling.
Re(\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
\frac{1}{2-i}ning surat va maxrajini murakkab tutash maxraj 2+i bilan ko‘paytiring.
Re(\frac{1\left(2+i\right)}{2^{2}-i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(2+i\right)}{5})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{2+i}{5})
2+i hosil qilish uchun 1 va 2+i ni ko'paytirish.
Re(\frac{2}{5}+\frac{1}{5}i)
\frac{2}{5}+\frac{1}{5}i ni olish uchun 2+i ni 5 ga bo‘ling.
\frac{2}{5}
\frac{2}{5}+\frac{1}{5}i ning real qismi – \frac{2}{5}.