x uchun yechish (complex solution)
x=1+\sqrt{7}i\approx 1+2,645751311i
x=-\sqrt{7}i+1\approx 1-2,645751311i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}x^{2}-x+4=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-1\right)±\sqrt{1-4\times \frac{1}{2}\times 4}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -1 ni b va 4 ni c bilan almashtiring.
x=\frac{-\left(-1\right)±\sqrt{1-2\times 4}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{1-8}}{2\times \frac{1}{2}}
-2 ni 4 marotabaga ko'paytirish.
x=\frac{-\left(-1\right)±\sqrt{-7}}{2\times \frac{1}{2}}
1 ni -8 ga qo'shish.
x=\frac{-\left(-1\right)±\sqrt{7}i}{2\times \frac{1}{2}}
-7 ning kvadrat ildizini chiqarish.
x=\frac{1±\sqrt{7}i}{2\times \frac{1}{2}}
-1 ning teskarisi 1 ga teng.
x=\frac{1±\sqrt{7}i}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{1+\sqrt{7}i}{1}
x=\frac{1±\sqrt{7}i}{1} tenglamasini yeching, bunda ± musbat. 1 ni i\sqrt{7} ga qo'shish.
x=1+\sqrt{7}i
1+i\sqrt{7} ni 1 ga bo'lish.
x=\frac{-\sqrt{7}i+1}{1}
x=\frac{1±\sqrt{7}i}{1} tenglamasini yeching, bunda ± manfiy. 1 dan i\sqrt{7} ni ayirish.
x=-\sqrt{7}i+1
1-i\sqrt{7} ni 1 ga bo'lish.
x=1+\sqrt{7}i x=-\sqrt{7}i+1
Tenglama yechildi.
\frac{1}{2}x^{2}-x+4=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{2}x^{2}-x+4-4=-4
Tenglamaning ikkala tarafidan 4 ni ayirish.
\frac{1}{2}x^{2}-x=-4
O‘zidan 4 ayirilsa 0 qoladi.
\frac{\frac{1}{2}x^{2}-x}{\frac{1}{2}}=-\frac{4}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{1}{\frac{1}{2}}\right)x=-\frac{4}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{4}{\frac{1}{2}}
-1 ni \frac{1}{2} ga bo'lish -1 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-2x=-8
-4 ni \frac{1}{2} ga bo'lish -4 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-2x+1=-8+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=-7
-8 ni 1 ga qo'shish.
\left(x-1\right)^{2}=-7
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{7}i x-1=-\sqrt{7}i
Qisqartirish.
x=1+\sqrt{7}i x=-\sqrt{7}i+1
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}