Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\left(-\frac{5}{8}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -\frac{5}{8} ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{8} kvadratini chiqarish.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-2\times 2}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{\frac{25}{64}-4}}{2\times \frac{1}{2}}
-2 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{5}{8}\right)±\sqrt{-\frac{231}{64}}}{2\times \frac{1}{2}}
\frac{25}{64} ni -4 ga qo'shish.
x=\frac{-\left(-\frac{5}{8}\right)±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
-\frac{231}{64} ning kvadrat ildizini chiqarish.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{2\times \frac{1}{2}}
-\frac{5}{8} ning teskarisi \frac{5}{8} ga teng.
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{5+\sqrt{231}i}{8}
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} tenglamasini yeching, bunda ± musbat. \frac{5}{8} ni \frac{i\sqrt{231}}{8} ga qo'shish.
x=\frac{-\sqrt{231}i+5}{8}
x=\frac{\frac{5}{8}±\frac{\sqrt{231}i}{8}}{1} tenglamasini yeching, bunda ± manfiy. \frac{5}{8} dan \frac{i\sqrt{231}}{8} ni ayirish.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
Tenglama yechildi.
\frac{1}{2}x^{2}-\frac{5}{8}x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{2}x^{2}-\frac{5}{8}x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
\frac{1}{2}x^{2}-\frac{5}{8}x=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{\frac{1}{2}x^{2}-\frac{5}{8}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{5}{8}}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{5}{4}x=-\frac{2}{\frac{1}{2}}
-\frac{5}{8} ni \frac{1}{2} ga bo'lish -\frac{5}{8} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-\frac{5}{4}x=-4
-2 ni \frac{1}{2} ga bo'lish -2 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=-4+\left(-\frac{5}{8}\right)^{2}
-\frac{5}{4} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{8} olish uchun. Keyin, -\frac{5}{8} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-4+\frac{25}{64}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{8} kvadratini chiqarish.
x^{2}-\frac{5}{4}x+\frac{25}{64}=-\frac{231}{64}
-4 ni \frac{25}{64} ga qo'shish.
\left(x-\frac{5}{8}\right)^{2}=-\frac{231}{64}
x^{2}-\frac{5}{4}x+\frac{25}{64} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{-\frac{231}{64}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{8}=\frac{\sqrt{231}i}{8} x-\frac{5}{8}=-\frac{\sqrt{231}i}{8}
Qisqartirish.
x=\frac{5+\sqrt{231}i}{8} x=\frac{-\sqrt{231}i+5}{8}
\frac{5}{8} ni tenglamaning ikkala tarafiga qo'shish.