Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x^{2}-\frac{3}{2}x+2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, -\frac{3}{2} ni b va 2 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{2}\times 2}}{2\times \frac{1}{2}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-2\times 2}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4}}{2\times \frac{1}{2}}
-2 ni 2 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{-\frac{7}{4}}}{2\times \frac{1}{2}}
\frac{9}{4} ni -4 ga qo'shish.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{\sqrt{7}i}{2}}{2\times \frac{1}{2}}
-\frac{7}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{2\times \frac{1}{2}}
-\frac{3}{2} ning teskarisi \frac{3}{2} ga teng.
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{3+\sqrt{7}i}{2}
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{1} tenglamasini yeching, bunda ± musbat. \frac{3}{2} ni \frac{i\sqrt{7}}{2} ga qo'shish.
x=\frac{-\sqrt{7}i+3}{2}
x=\frac{\frac{3}{2}±\frac{\sqrt{7}i}{2}}{1} tenglamasini yeching, bunda ± manfiy. \frac{3}{2} dan \frac{i\sqrt{7}}{2} ni ayirish.
x=\frac{3+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+3}{2}
Tenglama yechildi.
\frac{1}{2}x^{2}-\frac{3}{2}x+2=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{2}x^{2}-\frac{3}{2}x+2-2=-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
\frac{1}{2}x^{2}-\frac{3}{2}x=-2
O‘zidan 2 ayirilsa 0 qoladi.
\frac{\frac{1}{2}x^{2}-\frac{3}{2}x}{\frac{1}{2}}=-\frac{2}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{2}}\right)x=-\frac{2}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}-3x=-\frac{2}{\frac{1}{2}}
-\frac{3}{2} ni \frac{1}{2} ga bo'lish -\frac{3}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-3x=-4
-2 ni \frac{1}{2} ga bo'lish -2 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=-4+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-3x+\frac{9}{4}=-4+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x^{2}-3x+\frac{9}{4}=-\frac{7}{4}
-4 ni \frac{9}{4} ga qo'shish.
\left(x-\frac{3}{2}\right)^{2}=-\frac{7}{4}
x^{2}-3x+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{-\frac{7}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{2}=\frac{\sqrt{7}i}{2} x-\frac{3}{2}=-\frac{\sqrt{7}i}{2}
Qisqartirish.
x=\frac{3+\sqrt{7}i}{2} x=\frac{-\sqrt{7}i+3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.