Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x^{2}+6x+18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 6 ni b va 18 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-2\times 18}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36-36}}{2\times \frac{1}{2}}
-2 ni 18 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{0}}{2\times \frac{1}{2}}
36 ni -36 ga qo'shish.
x=-\frac{6}{2\times \frac{1}{2}}
0 ning kvadrat ildizini chiqarish.
x=-\frac{6}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
\frac{1}{2}x^{2}+6x+18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{2}x^{2}+6x+18-18=-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
\frac{1}{2}x^{2}+6x=-18
O‘zidan 18 ayirilsa 0 qoladi.
\frac{\frac{1}{2}x^{2}+6x}{\frac{1}{2}}=-\frac{18}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\frac{6}{\frac{1}{2}}x=-\frac{18}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+12x=-\frac{18}{\frac{1}{2}}
6 ni \frac{1}{2} ga bo'lish 6 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+12x=-36
-18 ni \frac{1}{2} ga bo'lish -18 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+12x+6^{2}=-36+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=-36+36
6 kvadratini chiqarish.
x^{2}+12x+36=0
-36 ni 36 ga qo'shish.
\left(x+6\right)^{2}=0
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=0 x+6=0
Qisqartirish.
x=-6 x=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x=-6
Tenglama yechildi. Yechimlar bir xil.