x uchun yechish
x=-6
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}x^{2}+6x+18=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-6±\sqrt{6^{2}-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{2} ni a, 6 ni b va 18 ni c bilan almashtiring.
x=\frac{-6±\sqrt{36-4\times \frac{1}{2}\times 18}}{2\times \frac{1}{2}}
6 kvadratini chiqarish.
x=\frac{-6±\sqrt{36-2\times 18}}{2\times \frac{1}{2}}
-4 ni \frac{1}{2} marotabaga ko'paytirish.
x=\frac{-6±\sqrt{36-36}}{2\times \frac{1}{2}}
-2 ni 18 marotabaga ko'paytirish.
x=\frac{-6±\sqrt{0}}{2\times \frac{1}{2}}
36 ni -36 ga qo'shish.
x=-\frac{6}{2\times \frac{1}{2}}
0 ning kvadrat ildizini chiqarish.
x=-\frac{6}{1}
2 ni \frac{1}{2} marotabaga ko'paytirish.
\frac{1}{2}x^{2}+6x+18=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{2}x^{2}+6x+18-18=-18
Tenglamaning ikkala tarafidan 18 ni ayirish.
\frac{1}{2}x^{2}+6x=-18
O‘zidan 18 ayirilsa 0 qoladi.
\frac{\frac{1}{2}x^{2}+6x}{\frac{1}{2}}=-\frac{18}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x^{2}+\frac{6}{\frac{1}{2}}x=-\frac{18}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x^{2}+12x=-\frac{18}{\frac{1}{2}}
6 ni \frac{1}{2} ga bo'lish 6 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+12x=-36
-18 ni \frac{1}{2} ga bo'lish -18 ga k'paytirish \frac{1}{2} ga qaytarish.
x^{2}+12x+6^{2}=-36+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+12x+36=-36+36
6 kvadratini chiqarish.
x^{2}+12x+36=0
-36 ni 36 ga qo'shish.
\left(x+6\right)^{2}=0
x^{2}+12x+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+6\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+6=0 x+6=0
Qisqartirish.
x=-6 x=-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
x=-6
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}