Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}x+\frac{1}{2}-x^{2}=6x+5
Ikkala tarafdan x^{2} ni ayirish.
\frac{1}{2}x+\frac{1}{2}-x^{2}-6x=5
Ikkala tarafdan 6x ni ayirish.
-\frac{11}{2}x+\frac{1}{2}-x^{2}=5
-\frac{11}{2}x ni olish uchun \frac{1}{2}x va -6x ni birlashtirish.
-\frac{11}{2}x+\frac{1}{2}-x^{2}-5=0
Ikkala tarafdan 5 ni ayirish.
-\frac{11}{2}x-\frac{9}{2}-x^{2}=0
-\frac{9}{2} olish uchun \frac{1}{2} dan 5 ni ayirish.
-x^{2}-\frac{11}{2}x-\frac{9}{2}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{11}{2}\right)±\sqrt{\left(-\frac{11}{2}\right)^{2}-4\left(-1\right)\left(-\frac{9}{2}\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -\frac{11}{2} ni b va -\frac{9}{2} ni c bilan almashtiring.
x=\frac{-\left(-\frac{11}{2}\right)±\sqrt{\frac{121}{4}-4\left(-1\right)\left(-\frac{9}{2}\right)}}{2\left(-1\right)}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{11}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{11}{2}\right)±\sqrt{\frac{121}{4}+4\left(-\frac{9}{2}\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{11}{2}\right)±\sqrt{\frac{121}{4}-18}}{2\left(-1\right)}
4 ni -\frac{9}{2} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{11}{2}\right)±\sqrt{\frac{49}{4}}}{2\left(-1\right)}
\frac{121}{4} ni -18 ga qo'shish.
x=\frac{-\left(-\frac{11}{2}\right)±\frac{7}{2}}{2\left(-1\right)}
\frac{49}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{11}{2}±\frac{7}{2}}{2\left(-1\right)}
-\frac{11}{2} ning teskarisi \frac{11}{2} ga teng.
x=\frac{\frac{11}{2}±\frac{7}{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{9}{-2}
x=\frac{\frac{11}{2}±\frac{7}{2}}{-2} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{11}{2} ni \frac{7}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-\frac{9}{2}
9 ni -2 ga bo'lish.
x=\frac{2}{-2}
x=\frac{\frac{11}{2}±\frac{7}{2}}{-2} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{7}{2} ni \frac{11}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=-1
2 ni -2 ga bo'lish.
x=-\frac{9}{2} x=-1
Tenglama yechildi.
\frac{1}{2}x+\frac{1}{2}-x^{2}=6x+5
Ikkala tarafdan x^{2} ni ayirish.
\frac{1}{2}x+\frac{1}{2}-x^{2}-6x=5
Ikkala tarafdan 6x ni ayirish.
-\frac{11}{2}x+\frac{1}{2}-x^{2}=5
-\frac{11}{2}x ni olish uchun \frac{1}{2}x va -6x ni birlashtirish.
-\frac{11}{2}x-x^{2}=5-\frac{1}{2}
Ikkala tarafdan \frac{1}{2} ni ayirish.
-\frac{11}{2}x-x^{2}=\frac{9}{2}
\frac{9}{2} olish uchun 5 dan \frac{1}{2} ni ayirish.
-x^{2}-\frac{11}{2}x=\frac{9}{2}
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}-\frac{11}{2}x}{-1}=\frac{\frac{9}{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\left(-\frac{\frac{11}{2}}{-1}\right)x=\frac{\frac{9}{2}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}+\frac{11}{2}x=\frac{\frac{9}{2}}{-1}
-\frac{11}{2} ni -1 ga bo'lish.
x^{2}+\frac{11}{2}x=-\frac{9}{2}
\frac{9}{2} ni -1 ga bo'lish.
x^{2}+\frac{11}{2}x+\left(\frac{11}{4}\right)^{2}=-\frac{9}{2}+\left(\frac{11}{4}\right)^{2}
\frac{11}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{11}{4} olish uchun. Keyin, \frac{11}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+\frac{11}{2}x+\frac{121}{16}=-\frac{9}{2}+\frac{121}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{11}{4} kvadratini chiqarish.
x^{2}+\frac{11}{2}x+\frac{121}{16}=\frac{49}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali -\frac{9}{2} ni \frac{121}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x+\frac{11}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{11}{2}x+\frac{121}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{11}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{11}{4}=\frac{7}{4} x+\frac{11}{4}=-\frac{7}{4}
Qisqartirish.
x=-1 x=-\frac{9}{2}
Tenglamaning ikkala tarafidan \frac{11}{4} ni ayirish.