u uchun yechish
u=-\frac{2v}{3}+4
v uchun yechish
v=-\frac{3u}{2}+6
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}u=2-\frac{1}{3}v
Ikkala tarafdan \frac{1}{3}v ni ayirish.
\frac{1}{2}u=-\frac{v}{3}+2
Tenglama standart shaklda.
\frac{\frac{1}{2}u}{\frac{1}{2}}=\frac{-\frac{v}{3}+2}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
u=\frac{-\frac{v}{3}+2}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
u=-\frac{2v}{3}+4
2-\frac{v}{3} ni \frac{1}{2} ga bo'lish 2-\frac{v}{3} ga k'paytirish \frac{1}{2} ga qaytarish.
\frac{1}{3}v=2-\frac{1}{2}u
Ikkala tarafdan \frac{1}{2}u ni ayirish.
\frac{1}{3}v=-\frac{u}{2}+2
Tenglama standart shaklda.
\frac{\frac{1}{3}v}{\frac{1}{3}}=\frac{-\frac{u}{2}+2}{\frac{1}{3}}
Ikkala tarafini 3 ga ko‘paytiring.
v=\frac{-\frac{u}{2}+2}{\frac{1}{3}}
\frac{1}{3} ga bo'lish \frac{1}{3} ga ko'paytirishni bekor qiladi.
v=-\frac{3u}{2}+6
2-\frac{u}{2} ni \frac{1}{3} ga bo'lish 2-\frac{u}{2} ga k'paytirish \frac{1}{3} ga qaytarish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}