t uchun yechish
t<\frac{3}{2}
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}t-\frac{3}{4}+\frac{2}{5}t<\frac{3}{5}
\frac{2}{5}t ni ikki tarafga qo’shing.
\frac{9}{10}t-\frac{3}{4}<\frac{3}{5}
\frac{9}{10}t ni olish uchun \frac{1}{2}t va \frac{2}{5}t ni birlashtirish.
\frac{9}{10}t<\frac{3}{5}+\frac{3}{4}
\frac{3}{4} ni ikki tarafga qo’shing.
\frac{9}{10}t<\frac{12}{20}+\frac{15}{20}
5 va 4 ning eng kichik umumiy karralisi 20 ga teng. \frac{3}{5} va \frac{3}{4} ni 20 maxraj bilan kasrlarga aylantirib oling.
\frac{9}{10}t<\frac{12+15}{20}
\frac{12}{20} va \frac{15}{20} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{9}{10}t<\frac{27}{20}
27 olish uchun 12 va 15'ni qo'shing.
t<\frac{27}{20}\times \frac{10}{9}
Ikki tarafini \frac{10}{9} va teskari kasri \frac{9}{10} ga ko‘paytiring. \frac{9}{10} musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
t<\frac{27\times 10}{20\times 9}
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{27}{20} ni \frac{10}{9} ga ko‘paytiring.
t<\frac{270}{180}
\frac{27\times 10}{20\times 9} kasridagi ko‘paytirishlarni bajaring.
t<\frac{3}{2}
\frac{270}{180} ulushini 90 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}