x uchun yechish
x=\frac{3}{8}=0,375
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}x+\frac{1}{2}\times \frac{1}{3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
\frac{1}{2} ga x+\frac{1}{3} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x+\frac{1\times 1}{2\times 3}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{3} ga ko‘paytiring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\left(\frac{2}{3}x-\frac{1}{6}\right)=x
\frac{1\times 1}{2\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{4}\times \frac{2}{3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
\frac{1}{4} ga \frac{2}{3}x-\frac{1}{6} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}x+\frac{1}{6}+\frac{1\times 2}{4\times 3}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{4} ni \frac{2}{3} ga ko‘paytiring.
\frac{1}{2}x+\frac{1}{6}+\frac{2}{12}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
\frac{1\times 2}{4\times 3} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1}{4}\left(-\frac{1}{6}\right)=x
\frac{2}{12} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{1\left(-1\right)}{4\times 6}=x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{4} ni -\frac{1}{6} ga ko‘paytiring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x+\frac{-1}{24}=x
\frac{1\left(-1\right)}{4\times 6} kasridagi ko‘paytirishlarni bajaring.
\frac{1}{2}x+\frac{1}{6}+\frac{1}{6}x-\frac{1}{24}=x
\frac{-1}{24} kasri manfiy belgini olib tashlash bilan -\frac{1}{24} sifatida qayta yozilishi mumkin.
\frac{2}{3}x+\frac{1}{6}-\frac{1}{24}=x
\frac{2}{3}x ni olish uchun \frac{1}{2}x va \frac{1}{6}x ni birlashtirish.
\frac{2}{3}x+\frac{4}{24}-\frac{1}{24}=x
6 va 24 ning eng kichik umumiy karralisi 24 ga teng. \frac{1}{6} va \frac{1}{24} ni 24 maxraj bilan kasrlarga aylantirib oling.
\frac{2}{3}x+\frac{4-1}{24}=x
\frac{4}{24} va \frac{1}{24} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{2}{3}x+\frac{3}{24}=x
3 olish uchun 4 dan 1 ni ayirish.
\frac{2}{3}x+\frac{1}{8}=x
\frac{3}{24} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{2}{3}x+\frac{1}{8}-x=0
Ikkala tarafdan x ni ayirish.
-\frac{1}{3}x+\frac{1}{8}=0
-\frac{1}{3}x ni olish uchun \frac{2}{3}x va -x ni birlashtirish.
-\frac{1}{3}x=-\frac{1}{8}
Ikkala tarafdan \frac{1}{8} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
x=-\frac{1}{8}\left(-3\right)
Ikki tarafini -3 va teskari kasri -\frac{1}{3} ga ko‘paytiring.
x=\frac{-\left(-3\right)}{8}
-\frac{1}{8}\left(-3\right) ni yagona kasrga aylantiring.
x=\frac{3}{8}
3 hosil qilish uchun -1 va -3 ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}