u uchun yechish
u=0
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}u+\frac{1}{2}\left(-3\right)=2u-\frac{3}{2}
\frac{1}{2} ga u-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}u+\frac{-3}{2}=2u-\frac{3}{2}
\frac{-3}{2} hosil qilish uchun \frac{1}{2} va -3 ni ko'paytirish.
\frac{1}{2}u-\frac{3}{2}=2u-\frac{3}{2}
\frac{-3}{2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
\frac{1}{2}u-\frac{3}{2}-2u=-\frac{3}{2}
Ikkala tarafdan 2u ni ayirish.
-\frac{3}{2}u-\frac{3}{2}=-\frac{3}{2}
-\frac{3}{2}u ni olish uchun \frac{1}{2}u va -2u ni birlashtirish.
-\frac{3}{2}u=-\frac{3}{2}+\frac{3}{2}
\frac{3}{2} ni ikki tarafga qo’shing.
-\frac{3}{2}u=0
0 olish uchun -\frac{3}{2} va \frac{3}{2}'ni qo'shing.
u=0
Ikki son koʻpaytmasi 0 ga teng, agar kamida bittasi 0 bo‘lsa. -\frac{3}{2} 0 ga teng bo‘lmasa, u 0 ga teng bo‘lishi kerak.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}