u uchun yechish
u=-\frac{2}{3}\approx -0,666666667
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}u+\frac{1}{2}\left(-3\right)=2u-\frac{1}{2}
\frac{1}{2} ga u-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}u+\frac{-3}{2}=2u-\frac{1}{2}
\frac{-3}{2} hosil qilish uchun \frac{1}{2} va -3 ni ko'paytirish.
\frac{1}{2}u-\frac{3}{2}=2u-\frac{1}{2}
\frac{-3}{2} kasri manfiy belgini olib tashlash bilan -\frac{3}{2} sifatida qayta yozilishi mumkin.
\frac{1}{2}u-\frac{3}{2}-2u=-\frac{1}{2}
Ikkala tarafdan 2u ni ayirish.
-\frac{3}{2}u-\frac{3}{2}=-\frac{1}{2}
-\frac{3}{2}u ni olish uchun \frac{1}{2}u va -2u ni birlashtirish.
-\frac{3}{2}u=-\frac{1}{2}+\frac{3}{2}
\frac{3}{2} ni ikki tarafga qo’shing.
-\frac{3}{2}u=\frac{-1+3}{2}
-\frac{1}{2} va \frac{3}{2} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{3}{2}u=\frac{2}{2}
2 olish uchun -1 va 3'ni qo'shing.
-\frac{3}{2}u=1
1 ni olish uchun 2 ni 2 ga bo‘ling.
u=1\left(-\frac{2}{3}\right)
Ikki tarafini -\frac{2}{3} va teskari kasri -\frac{3}{2} ga ko‘paytiring.
u=-\frac{2}{3}
-\frac{2}{3} hosil qilish uchun 1 va -\frac{2}{3} ni ko'paytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}