Baholash
\left(4x-5\right)\left(x+3\right)
Kengaytirish
4x^{2}+7x-15
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(\frac{1}{2}\times 4x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
\frac{1}{2} ga 4x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(\frac{4}{2}x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
\frac{4}{2} hosil qilish uchun \frac{1}{2} va 4 ni ko'paytirish.
\left(2x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
2 ni olish uchun 4 ni 2 ga bo‘ling.
\left(2x+\frac{-5}{2}\right)\left(2x+6\right)
\frac{-5}{2} hosil qilish uchun \frac{1}{2} va -5 ni ko'paytirish.
\left(2x-\frac{5}{2}\right)\left(2x+6\right)
\frac{-5}{2} kasri manfiy belgini olib tashlash bilan -\frac{5}{2} sifatida qayta yozilishi mumkin.
4x^{2}+12x-\frac{5}{2}\times 2x-\frac{5}{2}\times 6
2x-\frac{5}{2} ifodaning har bir elementini 2x+6 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
4x^{2}+12x-5x-\frac{5}{2}\times 6
2 va 2 ni qisqartiring.
4x^{2}+7x-\frac{5}{2}\times 6
7x ni olish uchun 12x va -5x ni birlashtirish.
4x^{2}+7x+\frac{-5\times 6}{2}
-\frac{5}{2}\times 6 ni yagona kasrga aylantiring.
4x^{2}+7x+\frac{-30}{2}
-30 hosil qilish uchun -5 va 6 ni ko'paytirish.
4x^{2}+7x-15
-15 ni olish uchun -30 ni 2 ga bo‘ling.
\left(\frac{1}{2}\times 4x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
\frac{1}{2} ga 4x-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(\frac{4}{2}x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
\frac{4}{2} hosil qilish uchun \frac{1}{2} va 4 ni ko'paytirish.
\left(2x+\frac{1}{2}\left(-5\right)\right)\left(2x+6\right)
2 ni olish uchun 4 ni 2 ga bo‘ling.
\left(2x+\frac{-5}{2}\right)\left(2x+6\right)
\frac{-5}{2} hosil qilish uchun \frac{1}{2} va -5 ni ko'paytirish.
\left(2x-\frac{5}{2}\right)\left(2x+6\right)
\frac{-5}{2} kasri manfiy belgini olib tashlash bilan -\frac{5}{2} sifatida qayta yozilishi mumkin.
4x^{2}+12x-\frac{5}{2}\times 2x-\frac{5}{2}\times 6
2x-\frac{5}{2} ifodaning har bir elementini 2x+6 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
4x^{2}+12x-5x-\frac{5}{2}\times 6
2 va 2 ni qisqartiring.
4x^{2}+7x-\frac{5}{2}\times 6
7x ni olish uchun 12x va -5x ni birlashtirish.
4x^{2}+7x+\frac{-5\times 6}{2}
-\frac{5}{2}\times 6 ni yagona kasrga aylantiring.
4x^{2}+7x+\frac{-30}{2}
-30 hosil qilish uchun -5 va 6 ni ko'paytirish.
4x^{2}+7x-15
-15 ni olish uchun -30 ni 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}