r uchun yechish
r=\frac{6136400000000000}{637}\approx 9,633281005 \cdot 10^{12}
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{2}\times 910^{2}\times 2r=667\times 10^{-11}\times 2\times 598\times 10^{24}
r qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2r ga, 2,r ning eng kichik karralisiga ko‘paytiring.
\frac{1}{2}\times 828100\times 2r=667\times 10^{-11}\times 2\times 598\times 10^{24}
2 daraja ko‘rsatkichini 910 ga hisoblang va 828100 ni qiymatni oling.
414050\times 2r=667\times 10^{-11}\times 2\times 598\times 10^{24}
414050 hosil qilish uchun \frac{1}{2} va 828100 ni ko'paytirish.
828100r=667\times 10^{-11}\times 2\times 598\times 10^{24}
828100 hosil qilish uchun 414050 va 2 ni ko'paytirish.
828100r=667\times 10^{13}\times 2\times 598
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. -11 va 24 ni qo‘shib, 13 ni oling.
828100r=667\times 10000000000000\times 2\times 598
13 daraja ko‘rsatkichini 10 ga hisoblang va 10000000000000 ni qiymatni oling.
828100r=6670000000000000\times 2\times 598
6670000000000000 hosil qilish uchun 667 va 10000000000000 ni ko'paytirish.
828100r=13340000000000000\times 598
13340000000000000 hosil qilish uchun 6670000000000000 va 2 ni ko'paytirish.
828100r=7977320000000000000
7977320000000000000 hosil qilish uchun 13340000000000000 va 598 ni ko'paytirish.
r=\frac{7977320000000000000}{828100}
Ikki tarafini 828100 ga bo‘ling.
r=\frac{6136400000000000}{637}
\frac{7977320000000000000}{828100} ulushini 1300 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}