Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{2}\left(2x+14\right)\left(x-0\times 5\right)=405
2x ni olish uchun x va x ni birlashtirish.
\frac{1}{2}\left(2x+14\right)\left(x-0\right)=405
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
\left(x+7\right)\left(x-0\right)=405
\frac{1}{2} ga 2x+14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x-0\right)+7\left(x-0\right)=405
x+7 ga x-0 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x-0\right)+7\left(x-0\right)-405=0
Ikkala tarafdan 405 ni ayirish.
xx+7x-405=0
Shartlarni qayta saralash.
x^{2}+7x-405=0
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x=\frac{-7±\sqrt{7^{2}-4\left(-405\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 7 ni b va -405 ni c bilan almashtiring.
x=\frac{-7±\sqrt{49-4\left(-405\right)}}{2}
7 kvadratini chiqarish.
x=\frac{-7±\sqrt{49+1620}}{2}
-4 ni -405 marotabaga ko'paytirish.
x=\frac{-7±\sqrt{1669}}{2}
49 ni 1620 ga qo'shish.
x=\frac{\sqrt{1669}-7}{2}
x=\frac{-7±\sqrt{1669}}{2} tenglamasini yeching, bunda ± musbat. -7 ni \sqrt{1669} ga qo'shish.
x=\frac{-\sqrt{1669}-7}{2}
x=\frac{-7±\sqrt{1669}}{2} tenglamasini yeching, bunda ± manfiy. -7 dan \sqrt{1669} ni ayirish.
x=\frac{\sqrt{1669}-7}{2} x=\frac{-\sqrt{1669}-7}{2}
Tenglama yechildi.
\frac{1}{2}\left(2x+14\right)\left(x-0\times 5\right)=405
2x ni olish uchun x va x ni birlashtirish.
\frac{1}{2}\left(2x+14\right)\left(x-0\right)=405
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
\left(x+7\right)\left(x-0\right)=405
\frac{1}{2} ga 2x+14 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x\left(x-0\right)+7\left(x-0\right)=405
x+7 ga x-0 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
xx+7x=405
Shartlarni qayta saralash.
x^{2}+7x=405
x^{2} hosil qilish uchun x va x ni ko'paytirish.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=405+\left(\frac{7}{2}\right)^{2}
7 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{7}{2} olish uchun. Keyin, \frac{7}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+7x+\frac{49}{4}=405+\frac{49}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{7}{2} kvadratini chiqarish.
x^{2}+7x+\frac{49}{4}=\frac{1669}{4}
405 ni \frac{49}{4} ga qo'shish.
\left(x+\frac{7}{2}\right)^{2}=\frac{1669}{4}
x^{2}+7x+\frac{49}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{1669}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{7}{2}=\frac{\sqrt{1669}}{2} x+\frac{7}{2}=-\frac{\sqrt{1669}}{2}
Qisqartirish.
x=\frac{\sqrt{1669}-7}{2} x=\frac{-\sqrt{1669}-7}{2}
Tenglamaning ikkala tarafidan \frac{7}{2} ni ayirish.