Asosiy tarkibga oʻtish
a uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

a=2\sqrt{a^{2}-3}
a qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2a ga, 2,a ning eng kichik karralisiga ko‘paytiring.
a-2\sqrt{a^{2}-3}=0
Ikkala tarafdan 2\sqrt{a^{2}-3} ni ayirish.
-2\sqrt{a^{2}-3}=-a
Tenglamaning ikkala tarafidan a ni ayirish.
\left(-2\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
\left(-2\right)^{2}\left(\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
\left(-2\sqrt{a^{2}-3}\right)^{2} ni kengaytirish.
4\left(\sqrt{a^{2}-3}\right)^{2}=\left(-a\right)^{2}
2 daraja ko‘rsatkichini -2 ga hisoblang va 4 ni qiymatni oling.
4\left(a^{2}-3\right)=\left(-a\right)^{2}
2 daraja ko‘rsatkichini \sqrt{a^{2}-3} ga hisoblang va a^{2}-3 ni qiymatni oling.
4a^{2}-12=\left(-a\right)^{2}
4 ga a^{2}-3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
4a^{2}-12=\left(-1\right)^{2}a^{2}
\left(-a\right)^{2} ni kengaytirish.
4a^{2}-12=1a^{2}
2 daraja ko‘rsatkichini -1 ga hisoblang va 1 ni qiymatni oling.
4a^{2}-12-a^{2}=0
Ikkala tarafdan 1a^{2} ni ayirish.
3a^{2}-12=0
3a^{2} ni olish uchun 4a^{2} va -a^{2} ni birlashtirish.
a^{2}-4=0
Ikki tarafini 3 ga bo‘ling.
\left(a-2\right)\left(a+2\right)=0
Hisoblang: a^{2}-4. a^{2}-4 ni a^{2}-2^{2} sifatida qaytadan yozish. Kvadratlarning farqini ushbu formula bilan hisoblash mumkin: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
a=2 a=-2
Tenglamani yechish uchun a-2=0 va a+2=0 ni yeching.
\frac{1}{2}=\frac{\sqrt{2^{2}-3}}{2}
\frac{1}{2}=\frac{\sqrt{a^{2}-3}}{a} tenglamasida a uchun 2 ni almashtiring.
\frac{1}{2}=\frac{1}{2}
Qisqartirish. a=2 tenglamani qoniqtiradi.
\frac{1}{2}=\frac{\sqrt{\left(-2\right)^{2}-3}}{-2}
\frac{1}{2}=\frac{\sqrt{a^{2}-3}}{a} tenglamasida a uchun -2 ni almashtiring.
\frac{1}{2}=-\frac{1}{2}
Qisqartirish. a=-2 qiymati bu tenglamani qoniqtirmaydi, chunki oʻng va chap tarafdagi belgilar bir-biriga qarama-qarshi.
a=2
-2\sqrt{a^{2}-3}=-a tenglamasi noyob yechimga ega.