Baholash
\frac{6}{7}\approx 0,857142857
Omil
\frac{2 \cdot 3}{7} = 0,8571428571428571
Baham ko'rish
Klipbordga nusxa olish
\frac{3}{6}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
2 va 6 ning eng kichik umumiy karralisi 6 ga teng. \frac{1}{2} va \frac{1}{6} ni 6 maxraj bilan kasrlarga aylantirib oling.
\frac{3+1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
\frac{3}{6} va \frac{1}{6} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{4}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
4 olish uchun 3 va 1'ni qo'shing.
\frac{2}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
\frac{4}{6} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{8}{12}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
3 va 12 ning eng kichik umumiy karralisi 12 ga teng. \frac{2}{3} va \frac{1}{12} ni 12 maxraj bilan kasrlarga aylantirib oling.
\frac{8+1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
\frac{8}{12} va \frac{1}{12} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{9}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
9 olish uchun 8 va 1'ni qo'shing.
\frac{3}{4}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
\frac{9}{12} ulushini 3 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{15}{20}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}
4 va 20 ning eng kichik umumiy karralisi 20 ga teng. \frac{3}{4} va \frac{1}{20} ni 20 maxraj bilan kasrlarga aylantirib oling.
\frac{15+1}{20}+\frac{1}{30}+\frac{1}{42}
\frac{15}{20} va \frac{1}{20} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{16}{20}+\frac{1}{30}+\frac{1}{42}
16 olish uchun 15 va 1'ni qo'shing.
\frac{4}{5}+\frac{1}{30}+\frac{1}{42}
\frac{16}{20} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{24}{30}+\frac{1}{30}+\frac{1}{42}
5 va 30 ning eng kichik umumiy karralisi 30 ga teng. \frac{4}{5} va \frac{1}{30} ni 30 maxraj bilan kasrlarga aylantirib oling.
\frac{24+1}{30}+\frac{1}{42}
\frac{24}{30} va \frac{1}{30} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{25}{30}+\frac{1}{42}
25 olish uchun 24 va 1'ni qo'shing.
\frac{5}{6}+\frac{1}{42}
\frac{25}{30} ulushini 5 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
\frac{35}{42}+\frac{1}{42}
6 va 42 ning eng kichik umumiy karralisi 42 ga teng. \frac{5}{6} va \frac{1}{42} ni 42 maxraj bilan kasrlarga aylantirib oling.
\frac{35+1}{42}
\frac{35}{42} va \frac{1}{42} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{36}{42}
36 olish uchun 35 va 1'ni qo'shing.
\frac{6}{7}
\frac{36}{42} ulushini 6 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}