Baholash
\frac{5}{2}-\sqrt{3}\approx 0,767949192
Viktorina
Trigonometry
5xshash muammolar:
\frac { 1 } { 2 + \sqrt { 3 } } + | \sin 30 ^ { \circ } - 1 |
Baham ko'rish
Klipbordga nusxa olish
\frac{2-\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}+|\sin(30)-1|
\frac{1}{2+\sqrt{3}} maxrajini 2-\sqrt{3} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{2-\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}+|\sin(30)-1|
Hisoblang: \left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2-\sqrt{3}}{4-3}+|\sin(30)-1|
2 kvadratini chiqarish. \sqrt{3} kvadratini chiqarish.
\frac{2-\sqrt{3}}{1}+|\sin(30)-1|
1 olish uchun 4 dan 3 ni ayirish.
2-\sqrt{3}+|\sin(30)-1|
Har qanday son birga bo‘linganda, natija o‘zi chiqadi.
2-\sqrt{3}+|\frac{1}{2}-1|
Trigonometrik qiymatlar jadvaldan \sin(30) qiymatini oling.
2-\sqrt{3}+|-\frac{1}{2}|
-\frac{1}{2} olish uchun \frac{1}{2} dan 1 ni ayirish.
2-\sqrt{3}+\frac{1}{2}
a haqiqiy sonining mutloq qiymati qachon a\geq 0 bo‘lganda, a yoki qachon a<0 bo‘lganda -a. -\frac{1}{2} ning mutloq qiymati \frac{1}{2} ga teng.
\frac{5}{2}-\sqrt{3}
\frac{5}{2} olish uchun 2 va \frac{1}{2}'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}