x uchun yechish
x=2
x = \frac{5}{2} = 2\frac{1}{2} = 2,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\left(-\frac{3}{10}\right)^{2}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{15} ni a, -\frac{3}{10} ni b va \frac{1}{3} ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-4\times \frac{1}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{10} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{15}\times \frac{1}{3}}}{2\times \frac{1}{15}}
-4 ni \frac{1}{15} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{9}{100}-\frac{4}{45}}}{2\times \frac{1}{15}}
Raqamlash sonlarini va maxraj sonlariga ko'paytirish orqali -\frac{4}{15} ni \frac{1}{3} ga ko'paytirish. So'ngra kasrni imkoni boricha eng kam a'zoga qisqartiring.
x=\frac{-\left(-\frac{3}{10}\right)±\sqrt{\frac{1}{900}}}{2\times \frac{1}{15}}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{9}{100} ni -\frac{4}{45} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{-\left(-\frac{3}{10}\right)±\frac{1}{30}}{2\times \frac{1}{15}}
\frac{1}{900} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{10}±\frac{1}{30}}{2\times \frac{1}{15}}
-\frac{3}{10} ning teskarisi \frac{3}{10} ga teng.
x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}}
2 ni \frac{1}{15} marotabaga ko'paytirish.
x=\frac{\frac{1}{3}}{\frac{2}{15}}
x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{10} ni \frac{1}{30} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=\frac{5}{2}
\frac{1}{3} ni \frac{2}{15} ga bo'lish \frac{1}{3} ga k'paytirish \frac{2}{15} ga qaytarish.
x=\frac{\frac{4}{15}}{\frac{2}{15}}
x=\frac{\frac{3}{10}±\frac{1}{30}}{\frac{2}{15}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{1}{30} ni \frac{3}{10} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=2
\frac{4}{15} ni \frac{2}{15} ga bo'lish \frac{4}{15} ga k'paytirish \frac{2}{15} ga qaytarish.
x=\frac{5}{2} x=2
Tenglama yechildi.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{15}x^{2}-\frac{3}{10}x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Tenglamaning ikkala tarafidan \frac{1}{3} ni ayirish.
\frac{1}{15}x^{2}-\frac{3}{10}x=-\frac{1}{3}
O‘zidan \frac{1}{3} ayirilsa 0 qoladi.
\frac{\frac{1}{15}x^{2}-\frac{3}{10}x}{\frac{1}{15}}=-\frac{\frac{1}{3}}{\frac{1}{15}}
Ikkala tarafini 15 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{10}}{\frac{1}{15}}\right)x=-\frac{\frac{1}{3}}{\frac{1}{15}}
\frac{1}{15} ga bo'lish \frac{1}{15} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{9}{2}x=-\frac{\frac{1}{3}}{\frac{1}{15}}
-\frac{3}{10} ni \frac{1}{15} ga bo'lish -\frac{3}{10} ga k'paytirish \frac{1}{15} ga qaytarish.
x^{2}-\frac{9}{2}x=-5
-\frac{1}{3} ni \frac{1}{15} ga bo'lish -\frac{1}{3} ga k'paytirish \frac{1}{15} ga qaytarish.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-5+\left(-\frac{9}{4}\right)^{2}
-\frac{9}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{9}{4} olish uchun. Keyin, -\frac{9}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-5+\frac{81}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{9}{4} kvadratini chiqarish.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{1}{16}
-5 ni \frac{81}{16} ga qo'shish.
\left(x-\frac{9}{4}\right)^{2}=\frac{1}{16}
x^{2}-\frac{9}{2}x+\frac{81}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{9}{4}=\frac{1}{4} x-\frac{9}{4}=-\frac{1}{4}
Qisqartirish.
x=\frac{5}{2} x=2
\frac{9}{4} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}