Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1}{10}x^{2}-\frac{3}{2}x+5=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\left(-\frac{3}{2}\right)^{2}-4\times \frac{1}{10}\times 5}}{2\times \frac{1}{10}}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} \frac{1}{10} ni a, -\frac{3}{2} ni b va 5 ni c bilan almashtiring.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-4\times \frac{1}{10}\times 5}}{2\times \frac{1}{10}}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-\frac{2}{5}\times 5}}{2\times \frac{1}{10}}
-4 ni \frac{1}{10} marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{9}{4}-2}}{2\times \frac{1}{10}}
-\frac{2}{5} ni 5 marotabaga ko'paytirish.
x=\frac{-\left(-\frac{3}{2}\right)±\sqrt{\frac{1}{4}}}{2\times \frac{1}{10}}
\frac{9}{4} ni -2 ga qo'shish.
x=\frac{-\left(-\frac{3}{2}\right)±\frac{1}{2}}{2\times \frac{1}{10}}
\frac{1}{4} ning kvadrat ildizini chiqarish.
x=\frac{\frac{3}{2}±\frac{1}{2}}{2\times \frac{1}{10}}
-\frac{3}{2} ning teskarisi \frac{3}{2} ga teng.
x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}}
2 ni \frac{1}{10} marotabaga ko'paytirish.
x=\frac{2}{\frac{1}{5}}
x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}} tenglamasini yeching, bunda ± musbat. Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni \frac{1}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=10
2 ni \frac{1}{5} ga bo'lish 2 ga k'paytirish \frac{1}{5} ga qaytarish.
x=\frac{1}{\frac{1}{5}}
x=\frac{\frac{3}{2}±\frac{1}{2}}{\frac{1}{5}} tenglamasini yeching, bunda ± manfiy. Umumiy maxrajni topib va suratlarni ayirib \frac{1}{2} ni \frac{3}{2} dan ayirish. So'ngra imkoni boricha kasrni eng kichik shartga qisqartirish.
x=5
1 ni \frac{1}{5} ga bo'lish 1 ga k'paytirish \frac{1}{5} ga qaytarish.
x=10 x=5
Tenglama yechildi.
\frac{1}{10}x^{2}-\frac{3}{2}x+5=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{1}{10}x^{2}-\frac{3}{2}x+5-5=-5
Tenglamaning ikkala tarafidan 5 ni ayirish.
\frac{1}{10}x^{2}-\frac{3}{2}x=-5
O‘zidan 5 ayirilsa 0 qoladi.
\frac{\frac{1}{10}x^{2}-\frac{3}{2}x}{\frac{1}{10}}=-\frac{5}{\frac{1}{10}}
Ikkala tarafini 10 ga ko‘paytiring.
x^{2}+\left(-\frac{\frac{3}{2}}{\frac{1}{10}}\right)x=-\frac{5}{\frac{1}{10}}
\frac{1}{10} ga bo'lish \frac{1}{10} ga ko'paytirishni bekor qiladi.
x^{2}-15x=-\frac{5}{\frac{1}{10}}
-\frac{3}{2} ni \frac{1}{10} ga bo'lish -\frac{3}{2} ga k'paytirish \frac{1}{10} ga qaytarish.
x^{2}-15x=-50
-5 ni \frac{1}{10} ga bo'lish -5 ga k'paytirish \frac{1}{10} ga qaytarish.
x^{2}-15x+\left(-\frac{15}{2}\right)^{2}=-50+\left(-\frac{15}{2}\right)^{2}
-15 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{15}{2} olish uchun. Keyin, -\frac{15}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-15x+\frac{225}{4}=-50+\frac{225}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{15}{2} kvadratini chiqarish.
x^{2}-15x+\frac{225}{4}=\frac{25}{4}
-50 ni \frac{225}{4} ga qo'shish.
\left(x-\frac{15}{2}\right)^{2}=\frac{25}{4}
x^{2}-15x+\frac{225}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{15}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{15}{2}=\frac{5}{2} x-\frac{15}{2}=-\frac{5}{2}
Qisqartirish.
x=10 x=5
\frac{15}{2} ni tenglamaning ikkala tarafiga qo'shish.