Baholash
\frac{1}{1-r^{2}}
r ga nisbatan hosilani topish
\frac{2r}{\left(1-r^{2}\right)^{2}}
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{1-r}-\frac{r}{\left(r-1\right)\left(-r-1\right)}
Faktor: 1-r^{2}.
\frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)}-\frac{-r}{\left(r-1\right)\left(r+1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1-r va \left(r-1\right)\left(-r-1\right) ning eng kichik umumiy karralisi \left(r-1\right)\left(r+1\right). \frac{1}{1-r} ni \frac{-\left(r+1\right)}{-\left(r+1\right)} marotabaga ko'paytirish. \frac{r}{\left(r-1\right)\left(-r-1\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{-\left(r+1\right)-\left(-r\right)}{\left(r-1\right)\left(r+1\right)}
\frac{-\left(r+1\right)}{\left(r-1\right)\left(r+1\right)} va \frac{-r}{\left(r-1\right)\left(r+1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{-r-1+r}{\left(r-1\right)\left(r+1\right)}
-\left(r+1\right)-\left(-r\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-1}{\left(r-1\right)\left(r+1\right)}
-r-1+r kabi iboralarga o‘xshab birlashtiring.
\frac{-1}{r^{2}-1}
\left(r-1\right)\left(r+1\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}