x uchun yechish
x = \frac{15 \sqrt{193} + 195}{16} \approx 25,21166624
x=\frac{195-15\sqrt{193}}{16}\approx -0,83666624
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, x,12 ning eng kichik karralisiga ko‘paytiring.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
\frac{75}{4} olish uchun \frac{27}{4} va 12'ni qo'shing.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Ikkala tarafdan x ni ayirish.
-x+54\times \frac{1}{8x+9}x+\frac{75}{4}=0
Shartlarni qayta saralash.
-x\times 4\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
x qiymati -\frac{9}{8} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(8x+9\right) ga, 8x+9,4 ning eng kichik karralisiga ko‘paytiring.
-4x\left(8x+9\right)+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
-4 hosil qilish uchun -1 va 4 ni ko'paytirish.
-32x^{2}-36x+54\times 4\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
-4x ga 8x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-32x^{2}-36x+216\times 1x+4\left(8x+9\right)\times \frac{75}{4}=0
216 hosil qilish uchun 54 va 4 ni ko'paytirish.
-32x^{2}-36x+216x+4\left(8x+9\right)\times \frac{75}{4}=0
216 hosil qilish uchun 216 va 1 ni ko'paytirish.
-32x^{2}+180x+4\left(8x+9\right)\times \frac{75}{4}=0
180x ni olish uchun -36x va 216x ni birlashtirish.
-32x^{2}+180x+75\left(8x+9\right)=0
75 hosil qilish uchun 4 va \frac{75}{4} ni ko'paytirish.
-32x^{2}+180x+600x+675=0
75 ga 8x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-32x^{2}+780x+675=0
780x ni olish uchun 180x va 600x ni birlashtirish.
x=\frac{-780±\sqrt{780^{2}-4\left(-32\right)\times 675}}{2\left(-32\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -32 ni a, 780 ni b va 675 ni c bilan almashtiring.
x=\frac{-780±\sqrt{608400-4\left(-32\right)\times 675}}{2\left(-32\right)}
780 kvadratini chiqarish.
x=\frac{-780±\sqrt{608400+128\times 675}}{2\left(-32\right)}
-4 ni -32 marotabaga ko'paytirish.
x=\frac{-780±\sqrt{608400+86400}}{2\left(-32\right)}
128 ni 675 marotabaga ko'paytirish.
x=\frac{-780±\sqrt{694800}}{2\left(-32\right)}
608400 ni 86400 ga qo'shish.
x=\frac{-780±60\sqrt{193}}{2\left(-32\right)}
694800 ning kvadrat ildizini chiqarish.
x=\frac{-780±60\sqrt{193}}{-64}
2 ni -32 marotabaga ko'paytirish.
x=\frac{60\sqrt{193}-780}{-64}
x=\frac{-780±60\sqrt{193}}{-64} tenglamasini yeching, bunda ± musbat. -780 ni 60\sqrt{193} ga qo'shish.
x=\frac{195-15\sqrt{193}}{16}
-780+60\sqrt{193} ni -64 ga bo'lish.
x=\frac{-60\sqrt{193}-780}{-64}
x=\frac{-780±60\sqrt{193}}{-64} tenglamasini yeching, bunda ± manfiy. -780 dan 60\sqrt{193} ni ayirish.
x=\frac{15\sqrt{193}+195}{16}
-780-60\sqrt{193} ni -64 ga bo'lish.
x=\frac{195-15\sqrt{193}}{16} x=\frac{15\sqrt{193}+195}{16}
Tenglama yechildi.
\frac{27}{4}+12+54x\left(8x+9\right)^{-1}=x
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 12x ga, x,12 ning eng kichik karralisiga ko‘paytiring.
\frac{75}{4}+54x\left(8x+9\right)^{-1}=x
\frac{75}{4} olish uchun \frac{27}{4} va 12'ni qo'shing.
\frac{75}{4}+54x\left(8x+9\right)^{-1}-x=0
Ikkala tarafdan x ni ayirish.
54x\left(8x+9\right)^{-1}-x=-\frac{75}{4}
Ikkala tarafdan \frac{75}{4} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x+54\times \frac{1}{8x+9}x=-\frac{75}{4}
Shartlarni qayta saralash.
-x\times 4\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
x qiymati -\frac{9}{8} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(8x+9\right) ga, 8x+9,4 ning eng kichik karralisiga ko‘paytiring.
-4x\left(8x+9\right)+54\times 4\times 1x=-75\left(8x+9\right)
-4 hosil qilish uchun -1 va 4 ni ko'paytirish.
-32x^{2}-36x+54\times 4\times 1x=-75\left(8x+9\right)
-4x ga 8x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-32x^{2}-36x+216\times 1x=-75\left(8x+9\right)
216 hosil qilish uchun 54 va 4 ni ko'paytirish.
-32x^{2}-36x+216x=-75\left(8x+9\right)
216 hosil qilish uchun 216 va 1 ni ko'paytirish.
-32x^{2}+180x=-75\left(8x+9\right)
180x ni olish uchun -36x va 216x ni birlashtirish.
-32x^{2}+180x=-600x-675
-75 ga 8x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-32x^{2}+180x+600x=-675
600x ni ikki tarafga qo’shing.
-32x^{2}+780x=-675
780x ni olish uchun 180x va 600x ni birlashtirish.
\frac{-32x^{2}+780x}{-32}=-\frac{675}{-32}
Ikki tarafini -32 ga bo‘ling.
x^{2}+\frac{780}{-32}x=-\frac{675}{-32}
-32 ga bo'lish -32 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{195}{8}x=-\frac{675}{-32}
\frac{780}{-32} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{195}{8}x=\frac{675}{32}
-675 ni -32 ga bo'lish.
x^{2}-\frac{195}{8}x+\left(-\frac{195}{16}\right)^{2}=\frac{675}{32}+\left(-\frac{195}{16}\right)^{2}
-\frac{195}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{195}{16} olish uchun. Keyin, -\frac{195}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{675}{32}+\frac{38025}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{195}{16} kvadratini chiqarish.
x^{2}-\frac{195}{8}x+\frac{38025}{256}=\frac{43425}{256}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{675}{32} ni \frac{38025}{256} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{195}{16}\right)^{2}=\frac{43425}{256}
x^{2}-\frac{195}{8}x+\frac{38025}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{195}{16}\right)^{2}}=\sqrt{\frac{43425}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{195}{16}=\frac{15\sqrt{193}}{16} x-\frac{195}{16}=-\frac{15\sqrt{193}}{16}
Qisqartirish.
x=\frac{15\sqrt{193}+195}{16} x=\frac{195-15\sqrt{193}}{16}
\frac{195}{16} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}