Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i
\frac{1}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(1-i\right)}{2}+i
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{1-i}{2}+i
1-i hosil qilish uchun 1 va 1-i ni ko'paytirish.
\frac{1}{2}-\frac{1}{2}i+i
\frac{1}{2}-\frac{1}{2}i ni olish uchun 1-i ni 2 ga bo‘ling.
\frac{1}{2}+\left(-\frac{1}{2}+1\right)i
\frac{1}{2}-\frac{1}{2}i va i sonlari ichida real va mavhum qismlarni birlashtiring.
\frac{1}{2}+\frac{1}{2}i
-\frac{1}{2} ni 1 ga qo'shish.
Re(\frac{1\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}+i)
\frac{1}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
Re(\frac{1\left(1-i\right)}{1^{2}-i^{2}}+i)
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(1-i\right)}{2}+i)
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{1-i}{2}+i)
1-i hosil qilish uchun 1 va 1-i ni ko'paytirish.
Re(\frac{1}{2}-\frac{1}{2}i+i)
\frac{1}{2}-\frac{1}{2}i ni olish uchun 1-i ni 2 ga bo‘ling.
Re(\frac{1}{2}+\left(-\frac{1}{2}+1\right)i)
\frac{1}{2}-\frac{1}{2}i va i sonlari ichida real va mavhum qismlarni birlashtiring.
Re(\frac{1}{2}+\frac{1}{2}i)
-\frac{1}{2} ni 1 ga qo'shish.
\frac{1}{2}
\frac{1}{2}+\frac{1}{2}i ning real qismi – \frac{1}{2}.