Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

x^{2}-4=\left(x-3\right)\left(2x+1\right)
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x-3,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
x^{2}-4=2x^{2}-5x-3
x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-4-2x^{2}=-5x-3
Ikkala tarafdan 2x^{2} ni ayirish.
-x^{2}-4=-5x-3
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
-x^{2}-4+5x=-3
5x ni ikki tarafga qo’shing.
-x^{2}-4+5x+3=0
3 ni ikki tarafga qo’shing.
-x^{2}-1+5x=0
-1 olish uchun -4 va 3'ni qo'shing.
-x^{2}+5x-1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 5 ni b va -1 ni c bilan almashtiring.
x=\frac{-5±\sqrt{25-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
5 kvadratini chiqarish.
x=\frac{-5±\sqrt{25+4\left(-1\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{25-4}}{2\left(-1\right)}
4 ni -1 marotabaga ko'paytirish.
x=\frac{-5±\sqrt{21}}{2\left(-1\right)}
25 ni -4 ga qo'shish.
x=\frac{-5±\sqrt{21}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{\sqrt{21}-5}{-2}
x=\frac{-5±\sqrt{21}}{-2} tenglamasini yeching, bunda ± musbat. -5 ni \sqrt{21} ga qo'shish.
x=\frac{5-\sqrt{21}}{2}
-5+\sqrt{21} ni -2 ga bo'lish.
x=\frac{-\sqrt{21}-5}{-2}
x=\frac{-5±\sqrt{21}}{-2} tenglamasini yeching, bunda ± manfiy. -5 dan \sqrt{21} ni ayirish.
x=\frac{\sqrt{21}+5}{2}
-5-\sqrt{21} ni -2 ga bo'lish.
x=\frac{5-\sqrt{21}}{2} x=\frac{\sqrt{21}+5}{2}
Tenglama yechildi.
x^{2}-4=\left(x-3\right)\left(2x+1\right)
x qiymati -2,2,3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-3\right)\left(x-2\right)\left(x+2\right) ga, x-3,x^{2}-4 ning eng kichik karralisiga ko‘paytiring.
x^{2}-4=2x^{2}-5x-3
x-3 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-4-2x^{2}=-5x-3
Ikkala tarafdan 2x^{2} ni ayirish.
-x^{2}-4=-5x-3
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
-x^{2}-4+5x=-3
5x ni ikki tarafga qo’shing.
-x^{2}+5x=-3+4
4 ni ikki tarafga qo’shing.
-x^{2}+5x=1
1 olish uchun -3 va 4'ni qo'shing.
\frac{-x^{2}+5x}{-1}=\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{5}{-1}x=\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{1}{-1}
5 ni -1 ga bo'lish.
x^{2}-5x=-1
1 ni -1 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-1+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-1+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=\frac{21}{4}
-1 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=\frac{21}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{21}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{21}}{2} x-\frac{5}{2}=-\frac{\sqrt{21}}{2}
Qisqartirish.
x=\frac{\sqrt{21}+5}{2} x=\frac{5-\sqrt{21}}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.