Tasdiqlamoq
toʻgʻri
Baham ko'rish
Klipbordga nusxa olish
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{\sqrt{2}\sqrt{2}}=\frac{\sqrt{2}}{2}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
2 hosil qilish uchun \sqrt{2} va \sqrt{2} ni ko'paytirish.
\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
\frac{1}{\sqrt{2}} maxrajini \sqrt{2} orqali surat va maxrajini koʻpaytirish orqali ratsionallashtiring.
\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
\sqrt{2} kvadrati – 2.
\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
Ikkala tarafdan \frac{\sqrt{2}}{2} ni ayirish.
0=0\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
0 ni olish uchun \frac{\sqrt{2}}{2} va -\frac{\sqrt{2}}{2} ni birlashtirish.
\text{true}\text{ and }\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}
0 va 0 ni taqqoslang.
\text{true}\text{ and }\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}=0
Ikkala tarafdan \frac{\sqrt{2}}{2} ni ayirish.
\text{true}\text{ and }0=0
0 ni olish uchun \frac{\sqrt{2}}{2} va -\frac{\sqrt{2}}{2} ni birlashtirish.
\text{true}\text{ and }\text{true}
0 va 0 ni taqqoslang.
\text{true}
\text{true} va \text{true} birlashmasi \text{true} ga teng.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}