Asosiy tarkibga oʻtish
α uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

1=\frac{1}{2}\left(\alpha -1\right)\pi ^{-1}
\alpha qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \alpha -1 ga ko'paytirish.
1=\left(\frac{1}{2}\alpha -\frac{1}{2}\right)\pi ^{-1}
\frac{1}{2} ga \alpha -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1=\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}
\frac{1}{2}\alpha -\frac{1}{2} ga \pi ^{-1} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}\alpha \pi ^{-1}=1+\frac{1}{2}\pi ^{-1}
\frac{1}{2}\pi ^{-1} ni ikki tarafga qo’shing.
\frac{1}{2}\times \frac{1}{\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Shartlarni qayta saralash.
\frac{1}{2\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{\pi } ga ko‘paytiring.
\frac{\alpha }{2\pi }=\frac{1}{2}\times \frac{1}{\pi }+1
\frac{1}{2\pi }\alpha ni yagona kasrga aylantiring.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{\pi } ga ko‘paytiring.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+\frac{2\pi }{2\pi }
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2\pi }{2\pi } marotabaga ko'paytirish.
\frac{\alpha }{2\pi }=\frac{1+2\pi }{2\pi }
\frac{1}{2\pi } va \frac{2\pi }{2\pi } da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2\pi }\alpha =\frac{2\pi +1}{2\pi }
Tenglama standart shaklda.
\frac{\frac{1}{2\pi }\alpha \times 2\pi }{1}=\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Ikki tarafini \frac{1}{2}\pi ^{-1} ga bo‘ling.
\alpha =\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
\frac{1}{2}\pi ^{-1} ga bo'lish \frac{1}{2}\pi ^{-1} ga ko'paytirishni bekor qiladi.
\alpha =2\pi +1
\frac{1+2\pi }{2\pi } ni \frac{1}{2}\pi ^{-1} ga bo'lish.
\alpha =2\pi +1\text{, }\alpha \neq 1
\alpha qiymati 1 teng bo‘lmaydi.