α uchun yechish
\alpha =2\pi +1\approx 7,283185307
Baham ko'rish
Klipbordga nusxa olish
1=\frac{1}{2}\left(\alpha -1\right)\pi ^{-1}
\alpha qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \alpha -1 ga ko'paytirish.
1=\left(\frac{1}{2}\alpha -\frac{1}{2}\right)\pi ^{-1}
\frac{1}{2} ga \alpha -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
1=\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}
\frac{1}{2}\alpha -\frac{1}{2} ga \pi ^{-1} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{1}{2}\alpha \pi ^{-1}-\frac{1}{2}\pi ^{-1}=1
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}\alpha \pi ^{-1}=1+\frac{1}{2}\pi ^{-1}
\frac{1}{2}\pi ^{-1} ni ikki tarafga qo’shing.
\frac{1}{2}\times \frac{1}{\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Shartlarni qayta saralash.
\frac{1}{2\pi }\alpha =\frac{1}{2}\times \frac{1}{\pi }+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{\pi } ga ko‘paytiring.
\frac{\alpha }{2\pi }=\frac{1}{2}\times \frac{1}{\pi }+1
\frac{1}{2\pi }\alpha ni yagona kasrga aylantiring.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+1
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{1}{2} ni \frac{1}{\pi } ga ko‘paytiring.
\frac{\alpha }{2\pi }=\frac{1}{2\pi }+\frac{2\pi }{2\pi }
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 1 ni \frac{2\pi }{2\pi } marotabaga ko'paytirish.
\frac{\alpha }{2\pi }=\frac{1+2\pi }{2\pi }
\frac{1}{2\pi } va \frac{2\pi }{2\pi } da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{1}{2\pi }\alpha =\frac{2\pi +1}{2\pi }
Tenglama standart shaklda.
\frac{\frac{1}{2\pi }\alpha \times 2\pi }{1}=\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
Ikki tarafini \frac{1}{2}\pi ^{-1} ga bo‘ling.
\alpha =\frac{2\pi +1}{2\pi \times \frac{1}{2\pi }}
\frac{1}{2}\pi ^{-1} ga bo'lish \frac{1}{2}\pi ^{-1} ga ko'paytirishni bekor qiladi.
\alpha =2\pi +1
\frac{1+2\pi }{2\pi } ni \frac{1}{2}\pi ^{-1} ga bo'lish.
\alpha =2\pi +1\text{, }\alpha \neq 1
\alpha qiymati 1 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}