Baholash
\frac{\alpha +\beta }{\alpha \beta }
Omil
\frac{\frac{\alpha }{\beta }+1}{\alpha }
Baham ko'rish
Klipbordga nusxa olish
\frac{\beta }{\alpha \beta }+\frac{\alpha }{\alpha \beta }
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \alpha va \beta ning eng kichik umumiy karralisi \alpha \beta . \frac{1}{\alpha } ni \frac{\beta }{\beta } marotabaga ko'paytirish. \frac{1}{\beta } ni \frac{\alpha }{\alpha } marotabaga ko'paytirish.
\frac{\beta +\alpha }{\alpha \beta }
\frac{\beta }{\alpha \beta } va \frac{\alpha }{\alpha \beta } da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}