α uchun yechish
\alpha \neq -1
\beta \neq -1
β uchun yechish
\beta \neq -1
\alpha \neq -1
Baham ko'rish
Klipbordga nusxa olish
\beta +1+\alpha +1=\beta +1+\alpha +1
\alpha qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(\alpha +1\right)\left(\beta +1\right) ga, \alpha +1,\beta +1,\left(\alpha +1\right)\left(\beta +1\right) ning eng kichik karralisiga ko‘paytiring.
\beta +2+\alpha =\beta +1+\alpha +1
2 olish uchun 1 va 1'ni qo'shing.
\beta +2+\alpha =\beta +2+\alpha
2 olish uchun 1 va 1'ni qo'shing.
\beta +2+\alpha -\alpha =\beta +2
Ikkala tarafdan \alpha ni ayirish.
\beta +2=\beta +2
0 ni olish uchun \alpha va -\alpha ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
\alpha \in \mathrm{R}
Bu har qanday \alpha uchun to‘g‘ri.
\alpha \in \mathrm{R}\setminus -1
\alpha qiymati -1 teng bo‘lmaydi.
\beta +1+\alpha +1=\beta +1+\alpha +1
\beta qiymati -1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(\alpha +1\right)\left(\beta +1\right) ga, \alpha +1,\beta +1,\left(\alpha +1\right)\left(\beta +1\right) ning eng kichik karralisiga ko‘paytiring.
\beta +2+\alpha =\beta +1+\alpha +1
2 olish uchun 1 va 1'ni qo'shing.
\beta +2+\alpha =\beta +2+\alpha
2 olish uchun 1 va 1'ni qo'shing.
\beta +2+\alpha -\beta =2+\alpha
Ikkala tarafdan \beta ni ayirish.
2+\alpha =2+\alpha
0 ni olish uchun \beta va -\beta ni birlashtirish.
\text{true}
Shartlarni qayta saralash.
\beta \in \mathrm{R}
Bu har qanday \beta uchun to‘g‘ri.
\beta \in \mathrm{R}\setminus -1
\beta qiymati -1 teng bo‘lmaydi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}