Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 3+2i.
\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+i\right)\left(3+2i\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13}
Binomlarni ko‘paytirgandek 1+i va 3+2i murakkab sonlarni ko‘paytiring.
\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{3+2i+3i-2}{13}
1\times 3+1\times \left(2i\right)+3i+2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3-2+\left(2+3\right)i}{13}
3+2i+3i-2 ichida real va mavhum qismlarni birlashtiring.
\frac{1+5i}{13}
3-2+\left(2+3\right)i ichida qo‘shishlarni bajaring.
\frac{1}{13}+\frac{5}{13}i
\frac{1}{13}+\frac{5}{13}i ni olish uchun 1+5i ni 13 ga bo‘ling.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{\left(3-2i\right)\left(3+2i\right)})
\frac{1+i}{3-2i}ning surat va maxrajini murakkab tutash maxraj 3+2i bilan ko‘paytiring.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{3^{2}-2^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+i\right)\left(3+2i\right)}{13})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2i^{2}}{13})
Binomlarni ko‘paytirgandek 1+i va 3+2i murakkab sonlarni ko‘paytiring.
Re(\frac{1\times 3+1\times \left(2i\right)+3i+2\left(-1\right)}{13})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{3+2i+3i-2}{13})
1\times 3+1\times \left(2i\right)+3i+2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{3-2+\left(2+3\right)i}{13})
3+2i+3i-2 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{1+5i}{13})
3-2+\left(2+3\right)i ichida qo‘shishlarni bajaring.
Re(\frac{1}{13}+\frac{5}{13}i)
\frac{1}{13}+\frac{5}{13}i ni olish uchun 1+5i ni 13 ga bo‘ling.
\frac{1}{13}
\frac{1}{13}+\frac{5}{13}i ning real qismi – \frac{1}{13}.