Baholash
-\frac{3}{5}+\frac{4}{5}i=-0,6+0,8i
Ashyoviy qism
-\frac{3}{5} = -0,6
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+2i.
\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(1+2i\right)\left(1+2i\right)}{5}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5}
Binomlarni ko‘paytirgandek 1+2i va 1+2i murakkab sonlarni ko‘paytiring.
\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{1+2i+2i-4}{5}
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{1-4+\left(2+2\right)i}{5}
1+2i+2i-4 ichida real va mavhum qismlarni birlashtiring.
\frac{-3+4i}{5}
1-4+\left(2+2\right)i ichida qo‘shishlarni bajaring.
-\frac{3}{5}+\frac{4}{5}i
-\frac{3}{5}+\frac{4}{5}i ni olish uchun -3+4i ni 5 ga bo‘ling.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)})
\frac{1+2i}{1-2i}ning surat va maxrajini murakkab tutash maxraj 1+2i bilan ko‘paytiring.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{1^{2}-2^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(1+2i\right)\left(1+2i\right)}{5})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2i^{2}}{5})
Binomlarni ko‘paytirgandek 1+2i va 1+2i murakkab sonlarni ko‘paytiring.
Re(\frac{1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right)}{5})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{1+2i+2i-4}{5})
1\times 1+1\times \left(2i\right)+2i\times 1+2\times 2\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{1-4+\left(2+2\right)i}{5})
1+2i+2i-4 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{-3+4i}{5})
1-4+\left(2+2\right)i ichida qo‘shishlarni bajaring.
Re(-\frac{3}{5}+\frac{4}{5}i)
-\frac{3}{5}+\frac{4}{5}i ni olish uchun -3+4i ni 5 ga bo‘ling.
-\frac{3}{5}
-\frac{3}{5}+\frac{4}{5}i ning real qismi – -\frac{3}{5}.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}