Asosiy tarkibga oʻtish
p uchun yechish (complex solution)
Tick mark Image
p uchun yechish
Tick mark Image
a uchun yechish (complex solution)
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Tenglamaning ikkala tarafini -x+7 ga ko'paytirish.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
a^{2} hosil qilish uchun a va a ni ko'paytirish.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
49-x^{2} ga p ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
49p-x^{2}p ga a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
49pa^{2}-x^{2}pa^{2} ga r ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
49pa^{2}r-x^{2}pa^{2}r ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
-13é ga -x+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
p'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Tenglama standart shaklda.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Ikki tarafini 49a^{2}rx-a^{2}rx^{3} ga bo‘ling.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
49a^{2}rx-a^{2}rx^{3} ga bo'lish 49a^{2}rx-a^{2}rx^{3} ga ko'paytirishni bekor qiladi.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
13é\left(-7+x\right) ni 49a^{2}rx-a^{2}rx^{3} ga bo'lish.
\left(49-x^{2}\right)parax=-13é\left(-x+7\right)
Tenglamaning ikkala tarafini -x+7 ga ko'paytirish.
\left(49-x^{2}\right)pa^{2}rx=-13é\left(-x+7\right)
a^{2} hosil qilish uchun a va a ni ko'paytirish.
\left(49p-x^{2}p\right)a^{2}rx=-13é\left(-x+7\right)
49-x^{2} ga p ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49pa^{2}-x^{2}pa^{2}\right)rx=-13é\left(-x+7\right)
49p-x^{2}p ga a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49pa^{2}r-x^{2}pa^{2}r\right)x=-13é\left(-x+7\right)
49pa^{2}-x^{2}pa^{2} ga r ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
49pa^{2}rx-pa^{2}rx^{3}=-13é\left(-x+7\right)
49pa^{2}r-x^{2}pa^{2}r ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
49pa^{2}rx-pa^{2}rx^{3}=13éx-91é
-13é ga -x+7 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\left(49a^{2}rx-a^{2}rx^{3}\right)p=13éx-91é
p'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(49rxa^{2}-ra^{2}x^{3}\right)p=13xé-91é
Tenglama standart shaklda.
\frac{\left(49rxa^{2}-ra^{2}x^{3}\right)p}{49rxa^{2}-ra^{2}x^{3}}=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
Ikki tarafini 49a^{2}rx-a^{2}rx^{3} ga bo‘ling.
p=\frac{13é\left(x-7\right)}{49rxa^{2}-ra^{2}x^{3}}
49a^{2}rx-a^{2}rx^{3} ga bo'lish 49a^{2}rx-a^{2}rx^{3} ga ko'paytirishni bekor qiladi.
p=-\frac{13é}{rx\left(x+7\right)a^{2}}
13é\left(-7+x\right) ni 49a^{2}rx-a^{2}rx^{3} ga bo'lish.