k uchun yechish
k=3
k=5
Baham ko'rish
Klipbordga nusxa olish
-k+3=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
k qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -k+4 ga ko'paytirish.
-k+3=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
-k+4 ga k ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-k+3=-k^{2}+4k+3k-12
-k+4 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-k+3=-k^{2}+7k-12
7k ni olish uchun 4k va 3k ni birlashtirish.
-k+3+k^{2}=7k-12
k^{2} ni ikki tarafga qo’shing.
-k+3+k^{2}-7k=-12
Ikkala tarafdan 7k ni ayirish.
-k+3+k^{2}-7k+12=0
12 ni ikki tarafga qo’shing.
-k+15+k^{2}-7k=0
15 olish uchun 3 va 12'ni qo'shing.
-8k+15+k^{2}=0
-8k ni olish uchun -k va -7k ni birlashtirish.
k^{2}-8k+15=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 15 ni c bilan almashtiring.
k=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
-8 kvadratini chiqarish.
k=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
-4 ni 15 marotabaga ko'paytirish.
k=\frac{-\left(-8\right)±\sqrt{4}}{2}
64 ni -60 ga qo'shish.
k=\frac{-\left(-8\right)±2}{2}
4 ning kvadrat ildizini chiqarish.
k=\frac{8±2}{2}
-8 ning teskarisi 8 ga teng.
k=\frac{10}{2}
k=\frac{8±2}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2 ga qo'shish.
k=5
10 ni 2 ga bo'lish.
k=\frac{6}{2}
k=\frac{8±2}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2 ni ayirish.
k=3
6 ni 2 ga bo'lish.
k=5 k=3
Tenglama yechildi.
-k+3=\left(-k+4\right)k+\left(-k+4\right)\left(-3\right)
k qiymati 4 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini -k+4 ga ko'paytirish.
-k+3=-k^{2}+4k+\left(-k+4\right)\left(-3\right)
-k+4 ga k ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-k+3=-k^{2}+4k+3k-12
-k+4 ga -3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-k+3=-k^{2}+7k-12
7k ni olish uchun 4k va 3k ni birlashtirish.
-k+3+k^{2}=7k-12
k^{2} ni ikki tarafga qo’shing.
-k+3+k^{2}-7k=-12
Ikkala tarafdan 7k ni ayirish.
-k+k^{2}-7k=-12-3
Ikkala tarafdan 3 ni ayirish.
-k+k^{2}-7k=-15
-15 olish uchun -12 dan 3 ni ayirish.
-8k+k^{2}=-15
-8k ni olish uchun -k va -7k ni birlashtirish.
k^{2}-8k=-15
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
k^{2}-8k+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
k^{2}-8k+16=-15+16
-4 kvadratini chiqarish.
k^{2}-8k+16=1
-15 ni 16 ga qo'shish.
\left(k-4\right)^{2}=1
k^{2}-8k+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(k-4\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
k-4=1 k-4=-1
Qisqartirish.
k=5 k=3
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}