Asosiy tarkibga oʻtish
f uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(f+3\right)\left(-f\right)=10f+42
f qiymati -\frac{21}{5},-3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(f+3\right)\left(5f+21\right) ga, 10f+42,f+3 ning eng kichik karralisiga ko‘paytiring.
f\left(-f\right)+3\left(-f\right)=10f+42
f+3 ga -f ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
f\left(-f\right)+3\left(-f\right)-10f=42
Ikkala tarafdan 10f ni ayirish.
f\left(-f\right)+3\left(-f\right)-10f-42=0
Ikkala tarafdan 42 ni ayirish.
f^{2}\left(-1\right)+3\left(-1\right)f-10f-42=0
f^{2} hosil qilish uchun f va f ni ko'paytirish.
f^{2}\left(-1\right)-3f-10f-42=0
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
f^{2}\left(-1\right)-13f-42=0
-13f ni olish uchun -3f va -10f ni birlashtirish.
-f^{2}-13f-42=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
f=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\left(-1\right)\left(-42\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -13 ni b va -42 ni c bilan almashtiring.
f=\frac{-\left(-13\right)±\sqrt{169-4\left(-1\right)\left(-42\right)}}{2\left(-1\right)}
-13 kvadratini chiqarish.
f=\frac{-\left(-13\right)±\sqrt{169+4\left(-42\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
f=\frac{-\left(-13\right)±\sqrt{169-168}}{2\left(-1\right)}
4 ni -42 marotabaga ko'paytirish.
f=\frac{-\left(-13\right)±\sqrt{1}}{2\left(-1\right)}
169 ni -168 ga qo'shish.
f=\frac{-\left(-13\right)±1}{2\left(-1\right)}
1 ning kvadrat ildizini chiqarish.
f=\frac{13±1}{2\left(-1\right)}
-13 ning teskarisi 13 ga teng.
f=\frac{13±1}{-2}
2 ni -1 marotabaga ko'paytirish.
f=\frac{14}{-2}
f=\frac{13±1}{-2} tenglamasini yeching, bunda ± musbat. 13 ni 1 ga qo'shish.
f=-7
14 ni -2 ga bo'lish.
f=\frac{12}{-2}
f=\frac{13±1}{-2} tenglamasini yeching, bunda ± manfiy. 13 dan 1 ni ayirish.
f=-6
12 ni -2 ga bo'lish.
f=-7 f=-6
Tenglama yechildi.
\left(f+3\right)\left(-f\right)=10f+42
f qiymati -\frac{21}{5},-3 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2\left(f+3\right)\left(5f+21\right) ga, 10f+42,f+3 ning eng kichik karralisiga ko‘paytiring.
f\left(-f\right)+3\left(-f\right)=10f+42
f+3 ga -f ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
f\left(-f\right)+3\left(-f\right)-10f=42
Ikkala tarafdan 10f ni ayirish.
f^{2}\left(-1\right)+3\left(-1\right)f-10f=42
f^{2} hosil qilish uchun f va f ni ko'paytirish.
f^{2}\left(-1\right)-3f-10f=42
-3 hosil qilish uchun 3 va -1 ni ko'paytirish.
f^{2}\left(-1\right)-13f=42
-13f ni olish uchun -3f va -10f ni birlashtirish.
-f^{2}-13f=42
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-f^{2}-13f}{-1}=\frac{42}{-1}
Ikki tarafini -1 ga bo‘ling.
f^{2}+\left(-\frac{13}{-1}\right)f=\frac{42}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
f^{2}+13f=\frac{42}{-1}
-13 ni -1 ga bo'lish.
f^{2}+13f=-42
42 ni -1 ga bo'lish.
f^{2}+13f+\left(\frac{13}{2}\right)^{2}=-42+\left(\frac{13}{2}\right)^{2}
13 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{13}{2} olish uchun. Keyin, \frac{13}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
f^{2}+13f+\frac{169}{4}=-42+\frac{169}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{13}{2} kvadratini chiqarish.
f^{2}+13f+\frac{169}{4}=\frac{1}{4}
-42 ni \frac{169}{4} ga qo'shish.
\left(f+\frac{13}{2}\right)^{2}=\frac{1}{4}
f^{2}+13f+\frac{169}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(f+\frac{13}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
f+\frac{13}{2}=\frac{1}{2} f+\frac{13}{2}=-\frac{1}{2}
Qisqartirish.
f=-6 f=-7
Tenglamaning ikkala tarafidan \frac{13}{2} ni ayirish.