x uchun yechish
x = \frac{9 \sqrt{33} - 9}{2} \approx 21,350531909
x=\frac{-9\sqrt{33}-9}{2}\approx -30,350531909
Grafik
Viktorina
Quadratic Equation
5xshash muammolar:
\frac { - 36 x } { - 36 + x } = 36 + \frac { 72 x } { 72 + x }
Baham ko'rish
Klipbordga nusxa olish
\left(x+72\right)\left(-36\right)x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
x qiymati -72,36 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-36\right)\left(x+72\right) ga, -36+x,72+x ning eng kichik karralisiga ko‘paytiring.
\left(-36x-2592\right)x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
x+72 ga -36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
-36x-2592 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=\left(x^{2}+36x-2592\right)\times 36+\left(x-36\right)\times 72x
x-36 ga x+72 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-36x^{2}-2592x=36x^{2}+1296x-93312+\left(x-36\right)\times 72x
x^{2}+36x-2592 ga 36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=36x^{2}+1296x-93312+\left(72x-2592\right)x
x-36 ga 72 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=36x^{2}+1296x-93312+72x^{2}-2592x
72x-2592 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=108x^{2}+1296x-93312-2592x
108x^{2} ni olish uchun 36x^{2} va 72x^{2} ni birlashtirish.
-36x^{2}-2592x=108x^{2}-1296x-93312
-1296x ni olish uchun 1296x va -2592x ni birlashtirish.
-36x^{2}-2592x-108x^{2}=-1296x-93312
Ikkala tarafdan 108x^{2} ni ayirish.
-144x^{2}-2592x=-1296x-93312
-144x^{2} ni olish uchun -36x^{2} va -108x^{2} ni birlashtirish.
-144x^{2}-2592x+1296x=-93312
1296x ni ikki tarafga qo’shing.
-144x^{2}-1296x=-93312
-1296x ni olish uchun -2592x va 1296x ni birlashtirish.
-144x^{2}-1296x+93312=0
93312 ni ikki tarafga qo’shing.
x=\frac{-\left(-1296\right)±\sqrt{\left(-1296\right)^{2}-4\left(-144\right)\times 93312}}{2\left(-144\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -144 ni a, -1296 ni b va 93312 ni c bilan almashtiring.
x=\frac{-\left(-1296\right)±\sqrt{1679616-4\left(-144\right)\times 93312}}{2\left(-144\right)}
-1296 kvadratini chiqarish.
x=\frac{-\left(-1296\right)±\sqrt{1679616+576\times 93312}}{2\left(-144\right)}
-4 ni -144 marotabaga ko'paytirish.
x=\frac{-\left(-1296\right)±\sqrt{1679616+53747712}}{2\left(-144\right)}
576 ni 93312 marotabaga ko'paytirish.
x=\frac{-\left(-1296\right)±\sqrt{55427328}}{2\left(-144\right)}
1679616 ni 53747712 ga qo'shish.
x=\frac{-\left(-1296\right)±1296\sqrt{33}}{2\left(-144\right)}
55427328 ning kvadrat ildizini chiqarish.
x=\frac{1296±1296\sqrt{33}}{2\left(-144\right)}
-1296 ning teskarisi 1296 ga teng.
x=\frac{1296±1296\sqrt{33}}{-288}
2 ni -144 marotabaga ko'paytirish.
x=\frac{1296\sqrt{33}+1296}{-288}
x=\frac{1296±1296\sqrt{33}}{-288} tenglamasini yeching, bunda ± musbat. 1296 ni 1296\sqrt{33} ga qo'shish.
x=\frac{-9\sqrt{33}-9}{2}
1296+1296\sqrt{33} ni -288 ga bo'lish.
x=\frac{1296-1296\sqrt{33}}{-288}
x=\frac{1296±1296\sqrt{33}}{-288} tenglamasini yeching, bunda ± manfiy. 1296 dan 1296\sqrt{33} ni ayirish.
x=\frac{9\sqrt{33}-9}{2}
1296-1296\sqrt{33} ni -288 ga bo'lish.
x=\frac{-9\sqrt{33}-9}{2} x=\frac{9\sqrt{33}-9}{2}
Tenglama yechildi.
\left(x+72\right)\left(-36\right)x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
x qiymati -72,36 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-36\right)\left(x+72\right) ga, -36+x,72+x ning eng kichik karralisiga ko‘paytiring.
\left(-36x-2592\right)x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
x+72 ga -36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=\left(x-36\right)\left(x+72\right)\times 36+\left(x-36\right)\times 72x
-36x-2592 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=\left(x^{2}+36x-2592\right)\times 36+\left(x-36\right)\times 72x
x-36 ga x+72 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-36x^{2}-2592x=36x^{2}+1296x-93312+\left(x-36\right)\times 72x
x^{2}+36x-2592 ga 36 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=36x^{2}+1296x-93312+\left(72x-2592\right)x
x-36 ga 72 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=36x^{2}+1296x-93312+72x^{2}-2592x
72x-2592 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-36x^{2}-2592x=108x^{2}+1296x-93312-2592x
108x^{2} ni olish uchun 36x^{2} va 72x^{2} ni birlashtirish.
-36x^{2}-2592x=108x^{2}-1296x-93312
-1296x ni olish uchun 1296x va -2592x ni birlashtirish.
-36x^{2}-2592x-108x^{2}=-1296x-93312
Ikkala tarafdan 108x^{2} ni ayirish.
-144x^{2}-2592x=-1296x-93312
-144x^{2} ni olish uchun -36x^{2} va -108x^{2} ni birlashtirish.
-144x^{2}-2592x+1296x=-93312
1296x ni ikki tarafga qo’shing.
-144x^{2}-1296x=-93312
-1296x ni olish uchun -2592x va 1296x ni birlashtirish.
\frac{-144x^{2}-1296x}{-144}=-\frac{93312}{-144}
Ikki tarafini -144 ga bo‘ling.
x^{2}+\left(-\frac{1296}{-144}\right)x=-\frac{93312}{-144}
-144 ga bo'lish -144 ga ko'paytirishni bekor qiladi.
x^{2}+9x=-\frac{93312}{-144}
-1296 ni -144 ga bo'lish.
x^{2}+9x=648
-93312 ni -144 ga bo'lish.
x^{2}+9x+\left(\frac{9}{2}\right)^{2}=648+\left(\frac{9}{2}\right)^{2}
9 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{9}{2} olish uchun. Keyin, \frac{9}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}+9x+\frac{81}{4}=648+\frac{81}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{9}{2} kvadratini chiqarish.
x^{2}+9x+\frac{81}{4}=\frac{2673}{4}
648 ni \frac{81}{4} ga qo'shish.
\left(x+\frac{9}{2}\right)^{2}=\frac{2673}{4}
x^{2}+9x+\frac{81}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x+\frac{9}{2}\right)^{2}}=\sqrt{\frac{2673}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x+\frac{9}{2}=\frac{9\sqrt{33}}{2} x+\frac{9}{2}=-\frac{9\sqrt{33}}{2}
Qisqartirish.
x=\frac{9\sqrt{33}-9}{2} x=\frac{-9\sqrt{33}-9}{2}
Tenglamaning ikkala tarafidan \frac{9}{2} ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}