x uchun yechish (complex solution)
x=\frac{4225+65\sqrt{4223}i}{16}\approx 264,0625+263,999992602i
x=\frac{-65\sqrt{4223}i+4225}{16}\approx 264,0625-263,999992602i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{-32x^{2}}{16900}+x=264
2 daraja ko‘rsatkichini 130 ga hisoblang va 16900 ni qiymatni oling.
-\frac{8}{4225}x^{2}+x=264
-\frac{8}{4225}x^{2} ni olish uchun -32x^{2} ni 16900 ga bo‘ling.
-\frac{8}{4225}x^{2}+x-264=0
Ikkala tarafdan 264 ni ayirish.
x=\frac{-1±\sqrt{1^{2}-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -\frac{8}{4225} ni a, 1 ni b va -264 ni c bilan almashtiring.
x=\frac{-1±\sqrt{1-4\left(-\frac{8}{4225}\right)\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
1 kvadratini chiqarish.
x=\frac{-1±\sqrt{1+\frac{32}{4225}\left(-264\right)}}{2\left(-\frac{8}{4225}\right)}
-4 ni -\frac{8}{4225} marotabaga ko'paytirish.
x=\frac{-1±\sqrt{1-\frac{8448}{4225}}}{2\left(-\frac{8}{4225}\right)}
\frac{32}{4225} ni -264 marotabaga ko'paytirish.
x=\frac{-1±\sqrt{-\frac{4223}{4225}}}{2\left(-\frac{8}{4225}\right)}
1 ni -\frac{8448}{4225} ga qo'shish.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{2\left(-\frac{8}{4225}\right)}
-\frac{4223}{4225} ning kvadrat ildizini chiqarish.
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}}
2 ni -\frac{8}{4225} marotabaga ko'paytirish.
x=\frac{\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} tenglamasini yeching, bunda ± musbat. -1 ni \frac{i\sqrt{4223}}{65} ga qo'shish.
x=\frac{-65\sqrt{4223}i+4225}{16}
-1+\frac{i\sqrt{4223}}{65} ni -\frac{16}{4225} ga bo'lish -1+\frac{i\sqrt{4223}}{65} ga k'paytirish -\frac{16}{4225} ga qaytarish.
x=\frac{-\frac{\sqrt{4223}i}{65}-1}{-\frac{16}{4225}}
x=\frac{-1±\frac{\sqrt{4223}i}{65}}{-\frac{16}{4225}} tenglamasini yeching, bunda ± manfiy. -1 dan \frac{i\sqrt{4223}}{65} ni ayirish.
x=\frac{4225+65\sqrt{4223}i}{16}
-1-\frac{i\sqrt{4223}}{65} ni -\frac{16}{4225} ga bo'lish -1-\frac{i\sqrt{4223}}{65} ga k'paytirish -\frac{16}{4225} ga qaytarish.
x=\frac{-65\sqrt{4223}i+4225}{16} x=\frac{4225+65\sqrt{4223}i}{16}
Tenglama yechildi.
\frac{-32x^{2}}{16900}+x=264
2 daraja ko‘rsatkichini 130 ga hisoblang va 16900 ni qiymatni oling.
-\frac{8}{4225}x^{2}+x=264
-\frac{8}{4225}x^{2} ni olish uchun -32x^{2} ni 16900 ga bo‘ling.
\frac{-\frac{8}{4225}x^{2}+x}{-\frac{8}{4225}}=\frac{264}{-\frac{8}{4225}}
Tenglamaning ikki tarafini -\frac{8}{4225} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x^{2}+\frac{1}{-\frac{8}{4225}}x=\frac{264}{-\frac{8}{4225}}
-\frac{8}{4225} ga bo'lish -\frac{8}{4225} ga ko'paytirishni bekor qiladi.
x^{2}-\frac{4225}{8}x=\frac{264}{-\frac{8}{4225}}
1 ni -\frac{8}{4225} ga bo'lish 1 ga k'paytirish -\frac{8}{4225} ga qaytarish.
x^{2}-\frac{4225}{8}x=-139425
264 ni -\frac{8}{4225} ga bo'lish 264 ga k'paytirish -\frac{8}{4225} ga qaytarish.
x^{2}-\frac{4225}{8}x+\left(-\frac{4225}{16}\right)^{2}=-139425+\left(-\frac{4225}{16}\right)^{2}
-\frac{4225}{8} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{4225}{16} olish uchun. Keyin, -\frac{4225}{16} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-139425+\frac{17850625}{256}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{4225}{16} kvadratini chiqarish.
x^{2}-\frac{4225}{8}x+\frac{17850625}{256}=-\frac{17842175}{256}
-139425 ni \frac{17850625}{256} ga qo'shish.
\left(x-\frac{4225}{16}\right)^{2}=-\frac{17842175}{256}
x^{2}-\frac{4225}{8}x+\frac{17850625}{256} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{4225}{16}\right)^{2}}=\sqrt{-\frac{17842175}{256}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{4225}{16}=\frac{65\sqrt{4223}i}{16} x-\frac{4225}{16}=-\frac{65\sqrt{4223}i}{16}
Qisqartirish.
x=\frac{4225+65\sqrt{4223}i}{16} x=\frac{-65\sqrt{4223}i+4225}{16}
\frac{4225}{16} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}