Baholash
-\frac{118}{105}\approx -1,123809524
Omil
-\frac{118}{105} = -1\frac{13}{105} = -1,1238095238095238
Viktorina
Arithmetic
5xshash muammolar:
\frac { - 3 } { 5 } + \frac { - 2 } { 3 } - \frac { - 1 } { 7 } =
Baham ko'rish
Klipbordga nusxa olish
-\frac{3}{5}+\frac{-2}{3}-\frac{-1}{7}
\frac{-3}{5} kasri manfiy belgini olib tashlash bilan -\frac{3}{5} sifatida qayta yozilishi mumkin.
-\frac{3}{5}-\frac{2}{3}-\frac{-1}{7}
\frac{-2}{3} kasri manfiy belgini olib tashlash bilan -\frac{2}{3} sifatida qayta yozilishi mumkin.
-\frac{9}{15}-\frac{10}{15}-\frac{-1}{7}
5 va 3 ning eng kichik umumiy karralisi 15 ga teng. -\frac{3}{5} va \frac{2}{3} ni 15 maxraj bilan kasrlarga aylantirib oling.
\frac{-9-10}{15}-\frac{-1}{7}
-\frac{9}{15} va \frac{10}{15} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
-\frac{19}{15}-\frac{-1}{7}
-19 olish uchun -9 dan 10 ni ayirish.
-\frac{19}{15}-\left(-\frac{1}{7}\right)
\frac{-1}{7} kasri manfiy belgini olib tashlash bilan -\frac{1}{7} sifatida qayta yozilishi mumkin.
-\frac{19}{15}+\frac{1}{7}
-\frac{1}{7} ning teskarisi \frac{1}{7} ga teng.
-\frac{133}{105}+\frac{15}{105}
15 va 7 ning eng kichik umumiy karralisi 105 ga teng. -\frac{19}{15} va \frac{1}{7} ni 105 maxraj bilan kasrlarga aylantirib oling.
\frac{-133+15}{105}
-\frac{133}{105} va \frac{15}{105} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
-\frac{118}{105}
-118 olish uchun -133 va 15'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}