Asosiy tarkibga oʻtish
x ga nisbatan hosilani topish
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(2x^{2}-13x^{1}+21\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1})-\left(-2x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-13x^{1}+21)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{1-1}-\left(-2x^{1}\left(2\times 2x^{2-1}-13x^{1-1}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(2x^{2}-13x^{1}+21\right)\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Qisqartirish.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\left(4x^{1}-13x^{0}\right)\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
2x^{2}-13x^{1}+21 ni -2x^{0} marotabaga ko'paytirish.
\frac{2x^{2}\left(-2\right)x^{0}-13x^{1}\left(-2\right)x^{0}+21\left(-2\right)x^{0}-\left(-2x^{1}\times 4x^{1}-2x^{1}\left(-13\right)x^{0}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
-2x^{1} ni 4x^{1}-13x^{0} marotabaga ko'paytirish.
\frac{2\left(-2\right)x^{2}-13\left(-2\right)x^{1}+21\left(-2\right)x^{0}-\left(-2\times 4x^{1+1}-2\left(-13\right)x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{-4x^{2}+26x^{1}-42x^{0}-\left(-8x^{2}+26x^{1}\right)}{\left(2x^{2}-13x^{1}+21\right)^{2}}
Qisqartirish.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x^{1}+21\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{4x^{2}-42x^{0}}{\left(2x^{2}-13x+21\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{4x^{2}-42}{\left(2x^{2}-13x+21\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.