Asosiy tarkibga oʻtish
Baholash
Tick mark Image
Ashyoviy qism
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\left(-2-6i\right)\left(1+7i\right)}{\left(1-7i\right)\left(1+7i\right)}
Ham hisoblagich, ham maxrajni maxraj kompleksiga murakkablash orqali ko'paytirish, 1+7i.
\frac{\left(-2-6i\right)\left(1+7i\right)}{1^{2}-7^{2}i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(-2-6i\right)\left(1+7i\right)}{50}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
\frac{-2-2\times \left(7i\right)-6i-6\times 7i^{2}}{50}
Binomlarni ko‘paytirgandek -2-6i va 1+7i murakkab sonlarni ko‘paytiring.
\frac{-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right)}{50}
Ta’rifi bo‘yicha, i^{2} – bu -1.
\frac{-2-14i-6i+42}{50}
-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
\frac{-2+42+\left(-14-6\right)i}{50}
-2-14i-6i+42 ichida real va mavhum qismlarni birlashtiring.
\frac{40-20i}{50}
-2+42+\left(-14-6\right)i ichida qo‘shishlarni bajaring.
\frac{4}{5}-\frac{2}{5}i
\frac{4}{5}-\frac{2}{5}i ni olish uchun 40-20i ni 50 ga bo‘ling.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{\left(1-7i\right)\left(1+7i\right)})
\frac{-2-6i}{1-7i}ning surat va maxrajini murakkab tutash maxraj 1+7i bilan ko‘paytiring.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{1^{2}-7^{2}i^{2}})
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(-2-6i\right)\left(1+7i\right)}{50})
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
Re(\frac{-2-2\times \left(7i\right)-6i-6\times 7i^{2}}{50})
Binomlarni ko‘paytirgandek -2-6i va 1+7i murakkab sonlarni ko‘paytiring.
Re(\frac{-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right)}{50})
Ta’rifi bo‘yicha, i^{2} – bu -1.
Re(\frac{-2-14i-6i+42}{50})
-2-2\times \left(7i\right)-6i-6\times 7\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
Re(\frac{-2+42+\left(-14-6\right)i}{50})
-2-14i-6i+42 ichida real va mavhum qismlarni birlashtiring.
Re(\frac{40-20i}{50})
-2+42+\left(-14-6\right)i ichida qo‘shishlarni bajaring.
Re(\frac{4}{5}-\frac{2}{5}i)
\frac{4}{5}-\frac{2}{5}i ni olish uchun 40-20i ni 50 ga bo‘ling.
\frac{4}{5}
\frac{4}{5}-\frac{2}{5}i ning real qismi – \frac{4}{5}.