x uchun yechish (complex solution)
x=4+\sqrt{3}i\approx 4+1,732050808i
x=-\sqrt{3}i+4\approx 4-1,732050808i
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-5\right)^{2}+2x=6
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
x^{2}-10x+25+2x=6
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+25=6
-8x ni olish uchun -10x va 2x ni birlashtirish.
x^{2}-8x+25-6=0
Ikkala tarafdan 6 ni ayirish.
x^{2}-8x+19=0
19 olish uchun 25 dan 6 ni ayirish.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 19}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -8 ni b va 19 ni c bilan almashtiring.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 19}}{2}
-8 kvadratini chiqarish.
x=\frac{-\left(-8\right)±\sqrt{64-76}}{2}
-4 ni 19 marotabaga ko'paytirish.
x=\frac{-\left(-8\right)±\sqrt{-12}}{2}
64 ni -76 ga qo'shish.
x=\frac{-\left(-8\right)±2\sqrt{3}i}{2}
-12 ning kvadrat ildizini chiqarish.
x=\frac{8±2\sqrt{3}i}{2}
-8 ning teskarisi 8 ga teng.
x=\frac{8+2\sqrt{3}i}{2}
x=\frac{8±2\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 8 ni 2i\sqrt{3} ga qo'shish.
x=4+\sqrt{3}i
8+2i\sqrt{3} ni 2 ga bo'lish.
x=\frac{-2\sqrt{3}i+8}{2}
x=\frac{8±2\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 8 dan 2i\sqrt{3} ni ayirish.
x=-\sqrt{3}i+4
8-2i\sqrt{3} ni 2 ga bo'lish.
x=4+\sqrt{3}i x=-\sqrt{3}i+4
Tenglama yechildi.
\left(x-5\right)^{2}+2x=6
Tenglamaning ikkala tarafini 2 ga ko'paytirish.
x^{2}-10x+25+2x=6
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-5\right)^{2} kengaytirilishi uchun ishlating.
x^{2}-8x+25=6
-8x ni olish uchun -10x va 2x ni birlashtirish.
x^{2}-8x=6-25
Ikkala tarafdan 25 ni ayirish.
x^{2}-8x=-19
-19 olish uchun 6 dan 25 ni ayirish.
x^{2}-8x+\left(-4\right)^{2}=-19+\left(-4\right)^{2}
-8 ni bo‘lish, x shartining koeffitsienti, 2 ga -4 olish uchun. Keyin, -4 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-8x+16=-19+16
-4 kvadratini chiqarish.
x^{2}-8x+16=-3
-19 ni 16 ga qo'shish.
\left(x-4\right)^{2}=-3
x^{2}-8x+16 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-3}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-4=\sqrt{3}i x-4=-\sqrt{3}i
Qisqartirish.
x=4+\sqrt{3}i x=-\sqrt{3}i+4
4 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}