Baholash
\frac{1}{x^{12}}
x ga nisbatan hosilani topish
-\frac{12}{x^{13}}
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x^{2}\right)^{4}\times \frac{1}{x^{20}}
Ifodani qisqartirish uchun eksponent qoidalaridan foydalanish.
x^{2\times 4}x^{20\left(-1\right)}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring.
x^{8}x^{20\left(-1\right)}
2 ni 4 marotabaga ko'paytirish.
x^{8}x^{-20}
20 ni -1 marotabaga ko'paytirish.
x^{8-20}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
x^{-12}
8 va -20 belgilarini qo'shish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{8}}{x^{20}})
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 4 ni ko‘paytirib, 8 ni oling.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{12}})
x^{20} ni x^{8}x^{12} sifatida qaytadan yozish. Surat va maxrajdagi ikkala x^{8} ni qisqartiring.
-\left(x^{12}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{12})
Agar F ikki differensial funksiya f\left(u\right) va u=g\left(x\right)'ning yig'indisi bo'lsa, ya'ni agar F\left(x\right)=f\left(g\left(x\right)\right) bo'lsa, F hosilasi f'ning u martalik hosilasi, g'ning x martalik hosilasi ya'ni \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right) bo'ladi.
-\left(x^{12}\right)^{-2}\times 12x^{12-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
-12x^{11}\left(x^{12}\right)^{-2}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}