Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

-4\left(x+3\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 1-4x^{2},4 ning eng kichik karralisiga ko‘paytiring.
\left(-4x-12\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
-4 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12x+4x^{2}-72=-\left(2x-1\right)\left(2x+1\right)
-4x-12 ga 6-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-12x+4x^{2}-72=\left(-2x+1\right)\left(2x+1\right)
-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12x+4x^{2}-72=-4x^{2}+1
-2x+1 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-12x+4x^{2}-72+4x^{2}=1
4x^{2} ni ikki tarafga qo’shing.
-12x+8x^{2}-72=1
8x^{2} ni olish uchun 4x^{2} va 4x^{2} ni birlashtirish.
-12x+8x^{2}-72-1=0
Ikkala tarafdan 1 ni ayirish.
-12x+8x^{2}-73=0
-73 olish uchun -72 dan 1 ni ayirish.
8x^{2}-12x-73=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 8\left(-73\right)}}{2\times 8}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 8 ni a, -12 ni b va -73 ni c bilan almashtiring.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 8\left(-73\right)}}{2\times 8}
-12 kvadratini chiqarish.
x=\frac{-\left(-12\right)±\sqrt{144-32\left(-73\right)}}{2\times 8}
-4 ni 8 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{144+2336}}{2\times 8}
-32 ni -73 marotabaga ko'paytirish.
x=\frac{-\left(-12\right)±\sqrt{2480}}{2\times 8}
144 ni 2336 ga qo'shish.
x=\frac{-\left(-12\right)±4\sqrt{155}}{2\times 8}
2480 ning kvadrat ildizini chiqarish.
x=\frac{12±4\sqrt{155}}{2\times 8}
-12 ning teskarisi 12 ga teng.
x=\frac{12±4\sqrt{155}}{16}
2 ni 8 marotabaga ko'paytirish.
x=\frac{4\sqrt{155}+12}{16}
x=\frac{12±4\sqrt{155}}{16} tenglamasini yeching, bunda ± musbat. 12 ni 4\sqrt{155} ga qo'shish.
x=\frac{\sqrt{155}+3}{4}
12+4\sqrt{155} ni 16 ga bo'lish.
x=\frac{12-4\sqrt{155}}{16}
x=\frac{12±4\sqrt{155}}{16} tenglamasini yeching, bunda ± manfiy. 12 dan 4\sqrt{155} ni ayirish.
x=\frac{3-\sqrt{155}}{4}
12-4\sqrt{155} ni 16 ga bo'lish.
x=\frac{\sqrt{155}+3}{4} x=\frac{3-\sqrt{155}}{4}
Tenglama yechildi.
-4\left(x+3\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
x qiymati -\frac{1}{2},\frac{1}{2} qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 4\left(2x-1\right)\left(2x+1\right) ga, 1-4x^{2},4 ning eng kichik karralisiga ko‘paytiring.
\left(-4x-12\right)\left(6-x\right)=-\left(2x-1\right)\left(2x+1\right)
-4 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12x+4x^{2}-72=-\left(2x-1\right)\left(2x+1\right)
-4x-12 ga 6-x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-12x+4x^{2}-72=\left(-2x+1\right)\left(2x+1\right)
-1 ga 2x-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-12x+4x^{2}-72=-4x^{2}+1
-2x+1 ga 2x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
-12x+4x^{2}-72+4x^{2}=1
4x^{2} ni ikki tarafga qo’shing.
-12x+8x^{2}-72=1
8x^{2} ni olish uchun 4x^{2} va 4x^{2} ni birlashtirish.
-12x+8x^{2}=1+72
72 ni ikki tarafga qo’shing.
-12x+8x^{2}=73
73 olish uchun 1 va 72'ni qo'shing.
8x^{2}-12x=73
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{8x^{2}-12x}{8}=\frac{73}{8}
Ikki tarafini 8 ga bo‘ling.
x^{2}+\left(-\frac{12}{8}\right)x=\frac{73}{8}
8 ga bo'lish 8 ga ko'paytirishni bekor qiladi.
x^{2}-\frac{3}{2}x=\frac{73}{8}
\frac{-12}{8} ulushini 4 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{73}{8}+\left(-\frac{3}{4}\right)^{2}
-\frac{3}{2} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{4} olish uchun. Keyin, -\frac{3}{4} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{73}{8}+\frac{9}{16}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{4} kvadratini chiqarish.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{155}{16}
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{73}{8} ni \frac{9}{16} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
\left(x-\frac{3}{4}\right)^{2}=\frac{155}{16}
x^{2}-\frac{3}{2}x+\frac{9}{16} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{155}{16}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{3}{4}=\frac{\sqrt{155}}{4} x-\frac{3}{4}=-\frac{\sqrt{155}}{4}
Qisqartirish.
x=\frac{\sqrt{155}+3}{4} x=\frac{3-\sqrt{155}}{4}
\frac{3}{4} ni tenglamaning ikkala tarafiga qo'shish.