Asosiy tarkibga oʻtish
m uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(m-3\right)\left(m+1\right)=m-1
m qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini m-1 ga ko'paytirish.
m^{2}-2m-3=m-1
m-3 ga m+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
m^{2}-2m-3-m=-1
Ikkala tarafdan m ni ayirish.
m^{2}-3m-3=-1
-3m ni olish uchun -2m va -m ni birlashtirish.
m^{2}-3m-3+1=0
1 ni ikki tarafga qo’shing.
m^{2}-3m-2=0
-2 olish uchun -3 va 1'ni qo'shing.
m=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-2\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va -2 ni c bilan almashtiring.
m=\frac{-\left(-3\right)±\sqrt{9-4\left(-2\right)}}{2}
-3 kvadratini chiqarish.
m=\frac{-\left(-3\right)±\sqrt{9+8}}{2}
-4 ni -2 marotabaga ko'paytirish.
m=\frac{-\left(-3\right)±\sqrt{17}}{2}
9 ni 8 ga qo'shish.
m=\frac{3±\sqrt{17}}{2}
-3 ning teskarisi 3 ga teng.
m=\frac{\sqrt{17}+3}{2}
m=\frac{3±\sqrt{17}}{2} tenglamasini yeching, bunda ± musbat. 3 ni \sqrt{17} ga qo'shish.
m=\frac{3-\sqrt{17}}{2}
m=\frac{3±\sqrt{17}}{2} tenglamasini yeching, bunda ± manfiy. 3 dan \sqrt{17} ni ayirish.
m=\frac{\sqrt{17}+3}{2} m=\frac{3-\sqrt{17}}{2}
Tenglama yechildi.
\left(m-3\right)\left(m+1\right)=m-1
m qiymati 1 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini m-1 ga ko'paytirish.
m^{2}-2m-3=m-1
m-3 ga m+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
m^{2}-2m-3-m=-1
Ikkala tarafdan m ni ayirish.
m^{2}-3m-3=-1
-3m ni olish uchun -2m va -m ni birlashtirish.
m^{2}-3m=-1+3
3 ni ikki tarafga qo’shing.
m^{2}-3m=2
2 olish uchun -1 va 3'ni qo'shing.
m^{2}-3m+\left(-\frac{3}{2}\right)^{2}=2+\left(-\frac{3}{2}\right)^{2}
-3 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{3}{2} olish uchun. Keyin, -\frac{3}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
m^{2}-3m+\frac{9}{4}=2+\frac{9}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{3}{2} kvadratini chiqarish.
m^{2}-3m+\frac{9}{4}=\frac{17}{4}
2 ni \frac{9}{4} ga qo'shish.
\left(m-\frac{3}{2}\right)^{2}=\frac{17}{4}
m^{2}-3m+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(m-\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
m-\frac{3}{2}=\frac{\sqrt{17}}{2} m-\frac{3}{2}=-\frac{\sqrt{17}}{2}
Qisqartirish.
m=\frac{\sqrt{17}+3}{2} m=\frac{3-\sqrt{17}}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.