b uchun yechish
b=-5\sqrt{195}i\approx -0-69,821200219i
b=5\sqrt{195}i\approx 69,821200219i
Baham ko'rish
Klipbordga nusxa olish
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
b qiymati -85,85 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 20\left(b-85\right)\left(b+85\right) ga, \left(85-b\right)\left(85+b\right),20 ning eng kichik karralisiga ko‘paytiring.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
55 olish uchun 85 dan 30 ni ayirish.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
-1100 hosil qilish uchun -20 va 55 ni ko'paytirish.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
121 olish uchun 85 va 36'ni qo'shing.
-133100=11\left(b-85\right)\left(b+85\right)
-133100 hosil qilish uchun -1100 va 121 ni ko'paytirish.
-133100=\left(11b-935\right)\left(b+85\right)
11 ga b-85 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-133100=11b^{2}-79475
11b-935 ga b+85 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11b^{2}-79475=-133100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
11b^{2}=-133100+79475
79475 ni ikki tarafga qo’shing.
11b^{2}=-53625
-53625 olish uchun -133100 va 79475'ni qo'shing.
b^{2}=\frac{-53625}{11}
Ikki tarafini 11 ga bo‘ling.
b^{2}=-4875
-4875 ni olish uchun -53625 ni 11 ga bo‘ling.
b=5\sqrt{195}i b=-5\sqrt{195}i
Tenglama yechildi.
-20\left(85-30\right)\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
b qiymati -85,85 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 20\left(b-85\right)\left(b+85\right) ga, \left(85-b\right)\left(85+b\right),20 ning eng kichik karralisiga ko‘paytiring.
-20\times 55\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
55 olish uchun 85 dan 30 ni ayirish.
-1100\left(85+36\right)=11\left(b-85\right)\left(b+85\right)
-1100 hosil qilish uchun -20 va 55 ni ko'paytirish.
-1100\times 121=11\left(b-85\right)\left(b+85\right)
121 olish uchun 85 va 36'ni qo'shing.
-133100=11\left(b-85\right)\left(b+85\right)
-133100 hosil qilish uchun -1100 va 121 ni ko'paytirish.
-133100=\left(11b-935\right)\left(b+85\right)
11 ga b-85 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-133100=11b^{2}-79475
11b-935 ga b+85 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
11b^{2}-79475=-133100
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
11b^{2}-79475+133100=0
133100 ni ikki tarafga qo’shing.
11b^{2}+53625=0
53625 olish uchun -79475 va 133100'ni qo'shing.
b=\frac{0±\sqrt{0^{2}-4\times 11\times 53625}}{2\times 11}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 11 ni a, 0 ni b va 53625 ni c bilan almashtiring.
b=\frac{0±\sqrt{-4\times 11\times 53625}}{2\times 11}
0 kvadratini chiqarish.
b=\frac{0±\sqrt{-44\times 53625}}{2\times 11}
-4 ni 11 marotabaga ko'paytirish.
b=\frac{0±\sqrt{-2359500}}{2\times 11}
-44 ni 53625 marotabaga ko'paytirish.
b=\frac{0±110\sqrt{195}i}{2\times 11}
-2359500 ning kvadrat ildizini chiqarish.
b=\frac{0±110\sqrt{195}i}{22}
2 ni 11 marotabaga ko'paytirish.
b=5\sqrt{195}i
b=\frac{0±110\sqrt{195}i}{22} tenglamasini yeching, bunda ± musbat.
b=-5\sqrt{195}i
b=\frac{0±110\sqrt{195}i}{22} tenglamasini yeching, bunda ± manfiy.
b=5\sqrt{195}i b=-5\sqrt{195}i
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}