Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{33^{28}}{3^{3}}=3^{5x}
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 7 va 4 ni ko‘paytirib, 28 ni oling.
\frac{3299060778251569566188233498374847942355841}{3^{3}}=3^{5x}
28 daraja ko‘rsatkichini 33 ga hisoblang va 3299060778251569566188233498374847942355841 ni qiymatni oling.
\frac{3299060778251569566188233498374847942355841}{27}=3^{5x}
3 daraja ko‘rsatkichini 3 ga hisoblang va 27 ni qiymatni oling.
122187436231539613562527166606475849716883=3^{5x}
122187436231539613562527166606475849716883 ni olish uchun 3299060778251569566188233498374847942355841 ni 27 ga bo‘ling.
3^{5x}=122187436231539613562527166606475849716883
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\log(3^{5x})=\log(122187436231539613562527166606475849716883)
Tenglamaning ikkala tarafiga tegishli logaritmni chiqarish.
5x\log(3)=\log(122187436231539613562527166606475849716883)
Darajaga ko'tarigan logaritm raqami raqam logaritmining darajasidir.
5x=\frac{\log(122187436231539613562527166606475849716883)}{\log(3)}
Ikki tarafini \log(3) ga bo‘ling.
5x=\log_{3}\left(122187436231539613562527166606475849716883\right)
Asosiy tenglamani almashtirish orqali \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{\log_{3}\left(122187436231539613562527166606475849716883\right)}{5}
Ikki tarafini 5 ga bo‘ling.